Posted by hexnet -

We seem to have fallen a bit behind in terms of keeping this site updated with RELEVANT MATHEMATICAL INFORMATION about hexagons. This is a deficit we're looking to correct as soon as possible. First up, let us consider the permutohedra. We at HEXNET.ORG have been meaning to write something about permutohedra for a couple of years now, but have never really found a good opportunity to so. WE WILL NOT EXPEND GREAT EFFORT DOING SO NOW. It will suffice to merely describe the concept in conjunction with some helpful imagery, which will hopefully serve as a useful foundation for further geometrical observations and investigations in the near future.

Please note: part of the reason we've postponed writing about permutohedra is actually our continuing inability to effectively create 3D images. This is too important a matter to tolerate further delays though, so we've decided to just rip off the appropriate material from Wikipedia and move on.

Tessellation of second-order permutohedra on a line. Talk of permutohedra in the popular media skyrocketed last year—due indirectly to my actions it seems—when they were mentioned in a brief writeup associated with Super Hexagon (another item we should really get around to writing about one of these days). Unfortunately, this writeup gave the erroneous impression that hexagons are first-order permutohedra, when in fact they are third-order permutohedra. A first-order permutohedron is just a dot on a line, and is in any event not a particularly good example of the permutohedral class as a whole. We hope that this post may go some way towards correcting this recent misperception.

To that end: The permutohedron of order n is the n-1 dimensional polytope embedded in an n-dimensional space, the vertices of which are formed by permuting the coordinates of the vector (1, 2, 3, ..., n). Thus, the first-order permutohedron is a vertex at coordinate 1 on a line (though this is again a somewhat degenerate case); the second-order permutohedron is a line segment formed between coordinates 1,2 and 2,1; and the third-order permutohedron, our beloved hexagon, can be visualized as a hexagon bisecting a cube spanning two units between coordinates 1 and 3 (if the diagram of the hexagon above was consistent with the diagram of the second-order permutohedron, it would include the 0,0,0 origin of the embedding space, which lies one further unit cube beyond the far vertex perpendicular to the plane of the hexagon). The truncated octahedron represents the fourth-order permutohedron, embedded in 4-space, and the omnitruncated 5-cell (or 4-simplex) represents the fifth-order permutohedron in 5-space, etc.

Space filling tessellation of truncated octahedra. As a consequence of this, all permutohedra lie entirely in the hyperplanes of their embedding spaces consisting of all points whose coordinates sum to the number 1 + 2 + ... + n. In the case of the hexagon, not only do the coordinates 1, 2, and 3 add up to 6 at the vertices, but the coordinates of every other point on the plane of the hexagon also add up to 6. All such hyperplanes can be tiled with translated copies of their respective permutohedra. As hexagons tessellate the plane, so truncated octahedra tessellate 3-space, the omnitruncated 5-cell tessellates 4-space, etc. One can visualize this most easily with the second-order permutohedron pictured above, where the next line segment on the upper left would be defined by the additional vertex at 0,3, the next one beyond that would be -1,4, etc.

All permutohedra of order > 3 contain hexagonal 2-faces—indeed, all 2-faces in higher-order permutohedra are either hexagons or squares, and all 3-faces are truncated octahedra, hexagonal prisms, or cubes. It goes without saying, of course, that no permutohedra of order > 3 are regular polytopes.

Permutohedra do not seem to be particularly widely discussed in the mathematical literature, evidently because they are seen as rather trivial and unimportant—they are perhaps a somewhat interesting way of representing certain combinatorial relationships, etc., but beyond that they don't really do much per se. This is perhaps true as far as it goes (though some would say the same thing about hexagons themselves believe it or not), but they do nonetheless have several other interesting properties worth noting, particularly in the context of their potential hexagonal import:

The 13 possible strict weak orderings on a set of three elements, representing the vertices, edges, and face of a hexagon. The n-order permutohedron has of course n! (the factorial of n) vertices: 1 = 1 vertex, 1x2 = 2 vertices, 1x2x3 = 6 vertices, 1x2x3x4 = 24 vertices, etc. Somewhat less obviously perhaps (and here I'm just going to quote Wikipedia verbatim), each permutohedron has one facet for each nonempty proper subset S of {1, 2, 3, ...,n}, consisting of the vertices in which all coordinates in positions in S are smaller than all coordinates in positions not in S. Thus, the total number of facets is 2n–2. More generally, the faces of the permutohedron (including the permutohedron itself, but not including the empty set) are in 1:1 correspondence with the strict weak orderings on a set of n items: a face of dimension d corresponds to a strict weak ordering in which there are nd equivalence classes. Because of this correspondence, the number of faces is given by the ordered Bell numbers. Thus, the total number of faces (that is, the total number of vertices, edges, polygonal faces, polyhedral cells, etc., up to and including the permutohedron itself) proceeds in the sequence 1 = 1, 2 + 1 = 3, 6 + 6 + 1 = 13, 24 + 36 + 14 + 1 = 75, 120 + 240 + 150 + 30 + 1 = 541, etc.

All permutohedra are the omnitruncated simplices of their respective dimensionality (that is, the n-1 dimension). Which, as far as I understand it, essentially involves turning all the faces of a simplex (that is, a generalized, higher-dimensional triangle) into outer facets. Most obviously, the hexagon can of course be construed as a triangle with three smaller removed from its corners—transforming its 3 edges and 3 vertices into 6 facets. The same is true of the truncated octahedron, which turns the 4 faces, 6 edges, and 4 vertices of a tetrehedron into 14 facets. And likewise up through the great chain of permutohedrality.

Projection of omnitruncated 5-cell in 3 dimensions. In summary then, the concept of permutohedrality gives us I think an important geometrical framework with which to understand some of the more important and unique properties of the hexagon. Indeed, one thing that all summaries of the permutohedral concept seem to mention is that they are n-dimensional generalizations of the hexagon. (It was such language that first brought them to our attention some years back.) This is of course true to a large extent, and the analogue with hexagonal principles certainly must be a part of any comprehensive account of the concept, but it should be remembered that the permutohedral lineage is but one of several unique and interesting categories that encompass the noble hexagon. One can certainly argue, I think with a great deal of justification, that the concept of permutohedrality encompasses the nucleus of hexagonal exceptionalism—in particular, by generalizing the deep relationship between hexagons and the three orthogonal Cartesian dimensions of Euclidean space, and by extension the relationship between the sixfold nature of the hexagon and the ontological procession from the monad to the dyad to the triad. But conversely—at least in the context of geometry—one might make the same claim about the vector equilibrium, or if you will cuboctahedron—which embodies the hexagonal virtue of having a vertex radius equal to its edge length (the hexagon and vector equilibrium being the only regularish polytopes in their respective spaces with this property), which in turn speaks to the relationship between circle packing and hexagonal tessellation, and about which we will have more to say in the future. Even the tedious cube must be said to have some claim to the hexagonal legacy—though certainly less so than either the truncated octahedron (which really should have a better name) or the vector equilibrium. At any rate, the point is worth emphasizing yet again that what makes the hexagon truly exceptional and superlative above all other shapes, in all possible spaces, is not that it is merely the planar representation of a certain class or category of thing, but that it represents the confluence and nexus of many categories—indeed, perhaps of all ontologically significant categories. It is this confluence that is the essence of hexagonal superiority, and it is this that must be exalted above all other properties.

All four main images here are slightly edited versions of images available on Wikimedia, as noted. All images include captions linking back to their original media files. The first and second images, of the second- and third-order permutohedra, are the work of Wikimedia user R. A. Nonenmacher, and are licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic, and 1.0 Generic license. The third image, of the truncated octahedron, is by Wikimedia user Lipedia and has been released into the public domain. The fourth image, of the omnitruncated 5-cell, is by Wikipedia user Claudio Rocchini and is licensed under the Creative Commons Attribution 3.0 Unported license. The solid projection of the omnitruncated 5-cell in the body of the post can be found here, and was created by Robert Webb with Mr. Webb's Stella software. All other images used here have been released into the public domain as well, and we thank those who have done so.


QuickBooks Pro Support Phone Number

at QuickBooks Pro Support Phone Number 1-844-235-3996 provides the optimum support for pro version. There is not much difference between the two of these versions except that the Pro Plus comes with additional. visit us:-

QucikBooks Pro Support Phone Number

at QuickBooks Pro Support Phone Number 1-844-235-3996 provides the optimum support for pro version. There is not much difference between the two of these versions except that the Pro Plus comes with additional. visit us:-

QuickBooks Pro Support Phone Number

at QuickBooks Pro Support Phone Number 1-844-235-3996 provides the optimum support for pro version. There is not much difference between the two of these versions except that the Pro Plus comes with additional. visit us:-

QuickBooks Support Phone Number

At QuickBooks Support Phone Number +1 800-417-3165 you can enjoy our uninterrupted assistance. Our team has been providing its matchless assistance for the errors in QuickBooks for quite a long time. Though this software is regarded as one of the top most accounting applications in the world, it is often accompanied by some errors. Read more- & visit us-

QuickBooks Support Phone Number

Enjoy Top-Notch Assistance at QUICKBOOKS PAYROLL SUPPORT PHONE NUMBER +1 800-417-3165. It is said that ‘hard work and success go hand in hand’. Our team at QuickBooks Payroll Support Phone Number +1 800-417-3165 follows this mantra dedicatedly and the results that we have achieved so far are applaudable. QuickBooks is the most opted application when it comes to handle accounting affairs. Read more- & visit us-

Quick fix for errors is available at our QuickBooks Enterprise Support Phone Number +1 800-417-3165. For an accounting application as extensive and popular as QuickBooks, having a few technical glitches is not a surprise at all. Our team helps you work smoothly on this software by eliminating all the errors that emerge in it. Read more- & visit us-

QuickBooks Support Phone Number

Get prominent solutions for QuickBooks near you right away! Without any doubts, QuickBooks has revolutionized the process of doing accounting that is the core strength for small as well as large-sized businesses. QuickBooks Support Phone Number +1-800-417-3165 is a backing portal that authenticates the users of QuickBooks to run its features in a user-friendly manner. Read more- & visit us-

QuickBooks Error H202

Submitted by quickbooks_support ( - 2019-08-28 06:24

QuickBooks Error H202 I must appreciate your informative posts and efforts you input. Of course, you are right about the subject. I have read it through many sources and every statement of your post is true. I am here with an important advice for QuickBooks users. In case your working with it becomes inefficient, contact the executives at QuickBooks Payroll Support Phone Number +1 833-228-2822. QuickBooks Bank Error 103

QuickBooks Enterprise Support Phone Number

Submitted by anonymous - 2019-08-28 09:06

QuickBooks Enterprise Support Phone Number .Our QuickBooks Enterprise professionals at QuickBooks Enterprise Support Number are always available for you to serve with the best. Let me introduce you with the excellent services of our QuickBooks Enterprise Support channel available at 1–833–441–8848 visit us :-

QuickBooks Error H202

With an engaged mind and satisfied mindset, I just loved your content. Pure content and relevance with excellent presentation. Your blog will soon have number of visitors if you keep sharing more. Hey, I have been using QuickBooks for so long now. In case you need QuickBooks assistance, you can contact the best customer care executives at QuickBooks Support Number +1 833-228-2822.

Read More: QuickBooks Error 5502

QuickBooks Customer Service Reading your pieces of information makes me wait for them. They are an important source of information and an accumulation of real content. You must write more often to share such information and publicize your writings. Here, I have valuable information for QuickBooks users. If any user is undergoing technical problems, then experts’ support is available 24*7. The users can opt for pro solutions regarding technical concerns. You can avail techniques and solutions at QuickBooks Customer Care +1 833-228-2822. Read More About

Hello, I must say that the content of your blog always revolves around the topic of discussion. I wish you great blogging carrier ahead. If you are facing difficulty in managing your accounts, QuickBooks Enterprise software is the best option for you. To know more about it, you can call on QuickBooks Enterprise Support Phone Number +1-844-233-5335. Website:

Re: QuickBooks Payroll Tech Support Number

gerçekten başarılı olmuş Edirne Protherm Servisi

Re: QuickBooks Payroll Tech Support Number

Submitted by quickbooks_support ( - 2019-09-26 07:29

QuickBooks is the most appealing accounting software that has given a modernized direction to the business owners. Despite being a standalone software, it sometimes throws nasty errors resulting in the corruption of QuickBooks company files. You can easily get instant help for QuickBooks errors at QuickBooks Support +1 844-233-5335. Website:

Re: QuickBooks Payroll Tech Support Number

QuickBooks Payroll is one of the powerful versions of QuickBooks that has attracted millions of customers. But sometimes you may face some errors in this software. To fix these errors dial our QuickBooks Payroll Support Phone Number +1 844-233-5335 and procure the most optimal solutions for QuickBooks Payroll errors. Website:

Re: QuickBooks Payroll Tech Support Number

QuickBooks is one of the most trustworthy brands which is famous for offering millions of people the best products. QuickBooks is providing great services globally over the years but it can also run into issues that can hamper your work. Thus, in such cases contact our team via QuickBooks Support Phone Number +1 844-233-5335. Website:

GMP Certifications and Consultants Delhi - India

Submitted by cemarking - 2019-09-27 06:49

Looking for GMP Certification and GMP Consultancy Services in Delhi - India? We are providing GMP Certification and GMP Consultants Services in India to get access of European market. Contact us for Requirements & Process.

QuickBooks Payroll Support Phone Number +1-833-422-8848

It is really difficult to find blogs written on such solid research. For a business like yours, I would suggest you use QuickBooks payroll as your payroll software. If you face difficulty, contact QuickBooks Payroll Support Phone Number +1-833-422-8848. They offer great solutions for all the errors.


QuickBooks Payroll Support

In the blog’s crowd like this, your blog stands out with great blogging content. I wish you luck with your blogging carrier. If you need payroll software for your blogger's team, use QuickBooks payroll software, which allows you to have unlimited payroll. You can also take help for the software from QuickBooks payroll Support number +1 (888) 238 7409.

Submitted by ajalex - 2019-10-08 07:54

Man, I really hates Math. I love this crash arena turbo strategy game.

You’ll get this error if you entered your login credentials incorrectly. Check that you entered your login credentials for the bank correctly and update for existing connections or re-enter your information for new connections.QuickBooksError 103 means is your accounting software has been stopped to taking your sign in request. This error will happen when the consumer login his credentials has been registered in Quickbooks Online, but this is not accepted by any financial status website. And also you have to do first update their sign in details on their bank website.In case QuickBooks Error Code 103 keeps appearing you can repeat the steps mentioned above, while using a different bank account or card. Users also need to make sure they go to the official bank website and make the necessary changes to authorize connections to third-party applications. If the error persists and you still cannot log in to your bank using QuickBooks Online then you can call the QuickBooks support number and ask for additional assistance. Professional software experts are available 24 hours a day and will be able to give a step-by-step guide so that you can solve QuickBooks banking error 103 as soon as possible.