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1 Introduction
Man deals with numbers every day, and has since the very beginning. It is
not hard to imagine Adam and Eve counting; if nothing else, they surely
counted the number of children they had. But we can be equally sure that
they counted the fruits which they plucked from the trees in the Garden,
and the number of branches which needed to be pruned, and the quantity
of vegetables and herbs which were available for their use. They must have
counted any number of things, and obviously they used numbers when they
did.

It is further certain the Adam and Eve engaged not only in counting, but
in calculation. When Adam went forth into the garden to select his food, he
surely looked at the number of fruits on a given tree to determine how many
would remain after he had his fill. And is this not subtraction? When he
was gathering up what he needed to take back to Eve, he surely calculated
how many fruits he would need to add to what he already had until he would
have enough. And is this not addition?

After the Fall, of course, counting and calculation continued, and as man’s
society expanded it grew ever more complex. Cain and Abel must have
determined how much of the fruit of their labors they could spare for sacrifice
to the Lord God; clearly, their calculations mattered significantly, as Abel’s
calculation, in terms of quality and quantity, was certainly better than Cain’s.
And when Cain left subject to his punishment for killing his brother, is
there any doubt that he continued to engage in calculation on a daily basis,
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determing what he would need, how many people were in a given area, how
much food would be required to feed his household, and so on ad infinitum?

In our own day, numbers are everywhere. Everyone with even a modicum
of financial responsibility deals daily with calculations, and often complex
ones, concerning the amount of money he has and how much he can afford
to spend. Sums and differences (that is, the results of addition and subtrac-
tion), of course, are simple and routine; frequently we must also engage in
multiplication and division, often of complex sorts. Our homes are nearly
universally subject to mortgages, which involve calculations of interest pay-
ments, and sometimes are complicated further by the addition of unpaid
interest to the principle (what financiers call the capitalization of interest).
We multiply the widths and lengths of rooms to determine square footage,
and of walls to determine how much paint or wallpaper will be needed. We
divide the amount of food our pets consume daily by the quantity of food in
the bag to determine when we need to buy more. The subjects and frequency
of our dealing with numbers are truly incalculable; they are a daily, and even
hourly, inescapable part of our lives.

So why an article about numbers? Why embark upon a laborious expla-
nation of something that is so ubiquitous? Surely, since they are everywhere,
we all must understand numbers? In fact, however, most people have only
the vaguest understanding of numbers, if any. We know the rules for manip-
ulating them, and we have some intuitive idea of what they represent; but
we have little idea of what they are and how they work. Because of this, we
have little if any idea about how they ought to work and whether our system
is as good as it could be.

This article attempts to provide an easy and accessible guide to numbers
and how they work. As such, it attempts to answer three major questions:

1. What are numbers?

2. How do they work?

3. Could the numbers we use be and work better than they are and do?
These are questions that we in our society are not trained to ask, and there-
fore examining them will probably stretch our minds. I ask the reader to bear
with me. It will undoubtedly involve some effort to understand our subject.
However, given the ubiquity and importance of numbers in our daily lives,
I can assure the reader that this effort will be richly rewarded throughout,
from the beginning to the end.
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Numbers are far from the exclusive domain of mathematicians. We use
numbers so much that we should all be interested in them, whether we enjoy
mathematics or not. For this reason, devising and using a sensible number
system is in the interest and to the benefit of everyone, from the youngest
schoolchild to the most grizzled of grandfathers. And with that, we embark
on our journey, a new “Excursion in Numbers.”1 I hope and pray that this
journey will be interesting and profitable to all who venture on it with me.

2 The Nature of Numbers
As explained briefly above,2 numbers are everywhere, and we use them con-
stantly. But very few of us really know what we’re dealing with when we’re
handling them. So our first task is to ask and answer the question, what
exactly is a number?

The mathematicians will answer this with, “Lots of things.” They will
tell you about natural numbers, whole numbers, rational numbers, irrational
numbers, even imaginary numbers. And all of these types of numbers have
their uses. We will talk about those things, too, in very simple terms. How-
ever, for now let’s stick with the most basic question: what are numbers?
You know, those things that we use when we’re counting something or doing
calculations on real things?

Let us answer this question by first examining the most fundamental
task that we perform with numbers: counting. When we begin to count
some group of things—say, the number of apples in a basket—we begin with
one, then proceed to two, then to three, and so on. When we have reached
the last apple, we stop, and we’ve finished counting. There is no limit to
how many apples we can possibly count; in theory, we could keep counting
forever and never run out of numbers. But there is a minimum number of
apples we can count: one.

What about the apples are we saying when we count them? We’re say-
ing that there is a given quantity of apples. However, we can also think
about quantity even apart from the apples; for example, we can think about
“eleven” considered simply as a number, not only as eleven apples, eleven
cars, or eleven something else. So fundamentally, number is quantity con-

1F. Emerson Andrews, An Excursion in Numbers (The Dozenal Society of America),
in The Atlantic Monthly, October 1152.

2See supra, Section 1, at 3.
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sidered as quantity. And that is indeed what number is, at its most basic
level.

Mathematicians refer to such numbers as natural numbers; that is, the
numbers from one to infinity. (Mathematicians define natural numbers as a
set; they write this set as {1, 2, 3, . . . }.)

Other, more complex forms of numbers can be derived from this. For
example, sometimes it is helpful for us to imagine a total lack of quantity; we
call that “zero,” and write it “0.” Indeed, we can even imagine numbers that
represent “quantities” less than the lack of quantity. For example, when we
subtract three from seven, we get 4, like so:

7− 3 = 4 (1)

However, let’s extend the idea of subtraction (which is easy to understand)
and switch those numbers around, subtracting seven from three.

3− 7 = −4 (2)

Naturally speaking, equation 2 really doesn’t mean anything sensible at all.
In terms of actual quantity, you can never have less than zero apples. How-
ever, it is very helpful, when dealing with more complex calculations, to
be able to use “numbers” that don’t exist in the real world. Thus, we
imagine negative numbers, numbers less than zero, so that we can work
with them and make our other calculations easier. The set of numbers
which contains zero and the natural numbers are called whole numbers;
the set is written {0, 1, 2, 3, . . . }. The set of numbers which contains zero
and numbers less than zero, as well as the natural numbers we described
earlier, are called by mathematicians real numbers, and the set is written
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.3

Then, of course, there are fractions (what in our current number system
we often, inaccurately, call “decimals”). Fractions are not properly called
“numbers,” in the literal sense; after all, when we cut an apple in half, we
do not have two apples. However, treating them as numbers simplifies our
mathematics immensely. Fractions are, purely and simply, parts of a whole.
They can be written either as parts per a whole—for example, as 1

2 for one
part of two, or 2

3 for two parts out of three—or as “decimals,” utilizing the
system of place notation4—as in 0.5 for one half, or 0.25 for one quarter.

3The set also contains all fractional parts of numbers, whether rational or irrational,
but we need not trouble ourselves with that at this time.

4For an explanation of this term, see infra, section 3.1, at 8.
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Fractions written as fractions—that is, writing two-thirds as 2
3—are al-

ways rational. However, fractions written with place notation5 can be either
rational or irrational. A fraction written with place notation is rational if it
can be written with perfect accuracy in a finite number of digits. An example
is 1

4 , which can be written with perfect accuracy in only two digits, 0.25. A
fraction is irrational if it cannot be so written. An example is 1

3 , which must
be written as a zero, a “decimal point,” and an infinite number of threes. As
another example, “pi,” or π (which in mathematical terms is defined as the
ratio of the circumference of a circle to its diameter), is 3.14159 and so on,
ad infinitum, with no discernible pattern of digits whatsoever.

Finally, there are imaginary numbers, which are numbers which do not
and cannot exist, but which, if we pretend that they do exist, make certain
very complex mathematics easier to do. As any elementary student can tell
you, it is impossible to find the square root of a negative number. This is
because multiplication can only produce a negative number if the signs are
mixed; that is, if a negative number is multiplied by a positive number, or
vice versa. If two negative numbers or two positive numbers are multiplied,
the result will be positive. That means that you can never multiply a num-
ber by itself and get a negative number; it’s simply impossible. Therefore,
negative numbers cannot have square roots (which is defined as the number
which, when multiplied by itself, produces the first number.) However, math-
ematicians have found that if they assign a letter, i, to mean “the square root
of −1,” they can do some extremely complex mathematics much, much more
easily. While this is an interesting device of mathematics, and I wanted to
make you aware of its existence, it won’t concern us at all in the tasks ahead,
so don’t worry too much about it unless you’re interested.

So, as we have seen, there are many different meanings for the word
“number.” For our purposes, however, number is just anything designed to
refer to quantity or to measurement. That much is simple enough.

However, why do we write numbers the way we do? That is, why do we
write “three” as 3, and “twenty-seven” as 27, and not as III and XXVII?
That is where these simple questions began to get interesting, and that is
the subject of our next section.

5Id.
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3 Possible Systems of Numbering
We currently write numbers according to the Arabic system, though it is
more properly called Indo-Arabic,6 and we do so with a base number of ten.7
But is this the only, or even the best, way for us to write numbers? What are
some other ways that we could write numbers, and which of them is easiest
and best?

3.1 Systems of Notation
Possible ways of writing numbers I will refer to as systems of notation, and
there are many possible systems of notation which are or have been in use
throughout the world. These may make use of place notation, of varying
bases, or of any number of other conceivable ideas.

The system of numbering most people in the West are familiar with, be-
sides the common Indo-Arabic system, is commonly called Roman numerals.
Roman numerals are far from crude or simple; they were good enough for
the largest and richest empire in the world for over a thousand years, and for
the rest of Europe even after that. Roman numerals make use of a system I
will refer to as varying bases in order write numbers sensibly.

Here’s how they work. The Romans selected various numbers which they
considered important enough to deserve their own symbols; these are the
numbers which I call, for lack of a better term, bases. The first special,
important number is, obviously enough, one, which they wrote as I. The next
is five, written as V. Then, they continued to select numbers they deemed
important, at larger and larger intervals from the last: ten, X; fifty, L; one
hundred, C; five hundred, D; one thousand, M; and so on. (Five thousand
was sometimes represented by a D with a line over top of it, D̄; however, I
have never seen a symbol larger than that, though there may well have been
such.) These few symbols—only seven or eight, fewer than the ten symbols
we currently have—were sufficient for the Romans to write any number they
ever had need of.

But how did they write the numbers between their special, important
ones? For example, how did they write four, or seventy-eight? They did so
by simply reduplicating the lower symbols until the total added up to the

6For more on this topic, see infra, section 3.1, at 8.
7For more on bases, see infra, section 3.2, at 11.

8



number they wanted. (Later Roman numerals also made use of subtraction,
as in “IV,” but we’ll stick with the original system for now.) To write four,
Romans just added ones together until they equalled four, like so: IIII. The
next number was five, which is one of the special numbers, so it was written
with its own symbol: V. Six, of course, is not a special number, so they
again combined the special numbers until it equalled six: VI. All numbers
were done in this way. So, for example, we arrive at seventy-eight, LXXVIII,
by adding the special numbers together:

L(50) + X(60) + X(70) + V(75) + I(76) + I(77) + I(78) = LXXVIII (3)

This system is perfectly adequate for representing all conceivable natural
numbers; for example, the current year, 2009, is written simply as MMVIIII
(or MMIX in the later notation, using subtraction), and the year 1883 is
written as MDCCCLXXXIII.

However, Roman numerals are very difficult to do calculations with, the
way that elementary students do so easily with our current common system.
Adding with Roman numerals is not too complicated; one simply combines
all the symbols together, then adds them together to make larger ones when
possible, like the following equation, which adds thirty-seven to forty-two to
yield a result of seventy-nine:

XXXVII + XXXXII = XXXXXXXVIIII = LXXVIIII (4)

As you can see, first one puts all the symbols from both numbers together,
yielding the monstrous XXXXXXXVIIII. Then, one counts out the Xs until
one has enough to make an L (or a C, or whatever the highest symbol one
can make with them might be; in this case, it is an L). One removes the five
Xs which make the L, then inserts the L, yielding LXXVIIII. One does the
same with the other symbols (in this case, no other symbols require it), and
then one has the result. Subtraction is done the same way, but backwards,
though it can get considerably more difficult than addition.

When one comes to do multiplication in Roman numerals, one sees just
how hopeless the system really is. Multiplication, in simple terms, is simply
repeated addition. For example, when one multiplies seven by three, one is
really adding seven to itself three times, like so:

7 · 3 = 7 + 7 + 7 = 21 (5)
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Truly, this is the height of simplicity. We all know how to multiply numbers
by hand, working out each step, in our current system, so I won’t demonstrate
it. But let’s try to do it in Roman numerals.

VII · III = VII + VII + VII = VVVIIIIII = XVVI = XXI (6)

Not only is this an extremely simple example, but I also skipped a step in
order to save space on the line (VVVIIIIII should have become XVIIIIII
before becoming XVVI). Difficult, of course, but still doable. Now, however,
try multiplying MDCCCLXXXIII by MCCCXXVI. The complexity problem
quite rapidly spins out of control.

So a simpler means, if one exists, is desirable.
That simpler means is called place notation. Place notation begins by

assigning a certain finite number of symbols to some of the lowest numbers.
In our system, we have nine symbols, for the numbers 1, 2, 3, 4, 5, 6, 7,
8, and 9. However, it then invents another number, which we call zero and
write as 0. That zero is what makes place notation possible; for with place
notation, the location of a digit is what determines its value, and without
zero one could not ensure that a digit was in its proper place.

Let’s look at an example. The year 1896 is the year that my great-
grandfather was born. We write that year by the number of years that have
passed since the birth of Christ; in this case, one thousand, eight hundred
and ninety-six. We see four digits written there, a one, an eight, a nine, and
a six. The one in this number, however, does not mean the number one.
Rather, it means the number one thousand. Similar, the eight does not mean
simply eight, but rather eight hundred. The nine does not mean nine, but
nine tens. The six, however, means exactly what it looks like: six.

How can we tell what each digit is supposed to mean? Each one looks
precisely the same whether it means six thousand or only six. However, we
can still tell exactly what each digit means based on where in the number it
is placed; hence, the name place notation.

The number furthest to the right (absent a decimal point, of course)
means only what it says. In this case, it means six; that is, six units of one.
The number immediately to the left of it, however, doesn’t mean simply
itself, nine. Rather, it means nine units of ten. The number to the right
of that, eight, doesn’t mean simply eight. Rather, it means eight units of
ten times ten, or eight units of one hundred. Finally, the one doesn’t mean
simply one, but rather one unit of ten times ten times ten, or one unit of one
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thousand. We can only tell what the whole number means once we determine
what each digit means, as we just did, and then add them all together; in this
case, the result of doing these calculations is one thousand, eight hundred
and ninety-six.

Put more precisely, for each place in a number we must consider two facts:
first, what multiple of ten belongs there, and second the value of the digit
that’s in that place. We start with the digit furthest to the right, except
those to the right of the decimal point. In this case, that digit is 6, which
has the value of six. Since this is the first digit, we multiply six by one,
which yields a result of six. We then save that six to be added to the total
later. Moving to the left, we see that the digit occupying that place is 9,
with a value of nine. We multiply the value of the first digit’s place, one, by
ten, yielding an answer of ten. So we know that the value of this place in
the number is ten. We then multiply ten by the value of the digit in that
place, which is nine, and get a result of ninety. We then put that ninety
with the six to be added to the total when we’re done. Next, we move to the
third place, which is occupied by 8, with a value of eight. The number that
belongs in the third place is ten multiplied by the value of the last place,
which was ten (remember, the place occupied by the nine?), yielding a result
of one hundred. So we know that the third place in the number is the one
that measures hundreds. The digit here is 8, so we multiply eight by one
hundred, getting eight hundred. We put the eight hundred with the ninety
and the six to be added to the total at the end. Finally, we come to the
last digit, 1, with a value of one. We then multiply the last place’s value,
one hundred, by ten, making a thousand. So we know that the fourth place
is the one that counts the thousands in the number. We then multiply a
thousand by the digit in that place, one, and get one thousand. Now, we’re
out of digits, so we put the one thousand with the eight hundred, the ninety,
and the six, and we add them up, giving us one thousand, eight hundred and
ninety-six.

This is really quite ingenious, and allows for easy expansion of numbers.
If, for example, we add another digit to the left, making the number 71,896,
we know precisely what the seven means, too; it means seven units of ten
times one thousand; that is, seven units of ten thousand, or seventy thousand.
Then, we simply add all the numbers up—seventy thousand, one thousand,
eight hundred, ninety, and six—and we have our final number.

But what if there are no units of some multiple of ten? For example,
what if our number were not one thousand, eight hundred and ninety-six,
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Place Notation
Digits 4 6 7 8
Multiples of Ten 1,000 100 10 1
Values 4,000 600 70 8
Total 4,678

Table 1: A table calculating four thousand, six hundred and seventy-eight
using place notation in base ten.

but rather one thousand and ninety-six? Doesn’t this place notation system
break down at that point? Yes, it does; that’s why it was not used for the
vast majority of human history. However, place notation has a saving grace:
the digit that means nothing, 0. When there are no units of a given multiple
of ten—in this case, there are no units of one hundred, which is ten times
ten—simply put a 0 in that place. So, one thousand and ninety-six is written
simply as 1096; that is, one unit of ten times ten times ten, or one thousand;
zero units of ten times ten, or one hundred; nine units of ten, or ninety; and
six units of one, or six. Without zero, of course, this system does not work;
with zero, however, it can write all possible numbers with no ambiguity.

Furthermore, Roman numerals cannot be used to write fractions at all;
however, place notation makes writing fractions easy. One does this simply
by adding digits to the right, rather than to the left. When one adds digits
to the left, one is adding units of increasing multiples; when one adds them
to the right, one is adding units of decreasing multiples. One we introduce
a symbol to separate the whole units from the fractional ones, we have no
problems at all. So, for example, one can write 7.2, which means seven units
of one, plus two units of one divided by ten, or two-tenths ( 2

10). Adding
another digit to the right, one is adding units of one divided by ten divided
by ten, or one-hundredth ( 1

100). And so on; one simply multiplies the digit
by the appropriate multiple of ten, adds all the results together, and one has
the number, including its fractional parts.

All this laborious exercise of multiples, multiplication, and final addition
happens automatically in our minds, of course, because we are extremely fa-
miliar with this sytem and have been using it extensively all our lives. This
complicated process of multiplication and division is, however, precisely what
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we’re doing every time we read a number written in our current, common
system, though we do it very quickly and without much thought. Imag-
ine, however, someone who had been working only with Roman numerals
for decades first encountering this system. A digit which means nothing?
Seriously? And do you really expect me to engage in all this multiplication
and division, then add the results together, just to read a simple number?

And yet, with appropriate practice, the numbers are just as easy to read
as Roman numerals are, and are immeasurably easier to use in calculations,
even calculations as simple as addition and multiplication. We are all familiar
with the way that such operations are done using our number system, so
I’ll refrain from giving examples; however, it’s easy to see that our way is
significantly easier than that one must use if writing in Roman numerals.

And so we can clearly see that place notation is by far the superior system
for writing numbers, at least of those that have been tried so far. The astute
reader will notice, however, that the number ten seemed extremely prominent
in our discussion of place notation. Why the number ten? That’s an excellent
question; the number ten is so significant because it is the base of our current
system, and that forms the subject of the next section.

3.2 The Concept of the Numerical Base
Place notation is clearly an excellent way of writing numbers. However, it
does present us with a choice that other number systems do not: namely, we
have to choose a base for our notation.

We’ve already seen how, in our current system, adding digits to the left
of the equation adds units of the next multiple of ten; that is, adding a 6
to the end of the number 56 adds not another six, but rather another six
hundred to the total number. This is because our current number system
uses ten as its base. Thus, the number written 656 involves six units of one,
plus five units of ten times one, or ten, and then six units of ten times ten,
or hundred, making a total of six hundred and fifty-six.

Many people confuse the benefits of the place notation system with the
benefits of the number ten. That is, they equate the two, and believe that
our easy system of numbering is not due to the brilliance of the digit zero
or the way that new places add or subtract multiples, but rather due to the
fact that it’s based on the number ten. This impression, however, is simply
not true.

Place notation works perfectly and easily with any base, whether it’s ten,
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five, or fifty. Indeed, the ancient Mayans, who were brilliant mathematicians,
used a based of twenty, and the ancient Babylonians, also skilled in the math-
ematical arts, used a base of sixty (which yielded our system of measuring
three hundred and sixty degrees in a circle). Despite not using base ten,
these peoples were able to take full advantage of the benefits of using place
notation. There really is nothing special about ten in this regard.

What is required for using place notation, if the number ten is not? Only
two things:

1. A digit to hold place when there is no unit of a given multiple in a
number. Namely, a digit for zero.

2. A total number of digits equal to the base of the system; that is, zero,
plus digits for all whole numbers between zero and the base. In our
system, these digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9; ten digits, equal
to the base of our system, ten.

Our society already uses place notation for several bases other than ten,
though mostly these are used by computers. The three most common bases
are binary (base two), octal (base eight), and hexadecimal, or hex (base
sixteen).

Let’s look for a minute at base two, the lowest possible base. To write
numbers in base two, one needs two things: a digit to represent zero, and
a total number of digits equal to the base itself. Therefore, we need a zero
and one other digit. Customarily, we simply use 0 and 1 for these two digits.
And that’s it; we have our binary number system.

Let’s begin by counting in binary. We’ll start with zero, and write it thus:
0. After zero, we proceed to one, written thus: 1. Now, we want to count to
two. Two, however, is our base; that means we’ve reached a multiple of our
base, and we have to add a digit to the left to properly write the number.
So, we write the number two in binary: 10.

Remember to forget your training while you’re reading this. Mentally,
when we see the digit one followed by the digit zero, we don’t read it properly,
to mean “one unit of ten and zero units of one.” Rather, we read it simply as
“ten.” However, those digits only mean “ten” when one is writing in base ten;
here, we are writing in base two, which means that “10” means something
very different.

We know that it means two, since we just counted to it. However, let’s
look at the 10 and determine how it means two in binary without counting
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up to it. We start with the rightmost digit (absent any fractional part); this
is zero. That means that we have zero units of one. (This digit will mean
the same thing in every base; that is, units of one.) Then, we move on to
the next rightmost digit, in this case 1. Since we are using base two, that 1
means that we have one unit of our base, which is two. So, we have one unit
of two and zero units of one. Two plus zero equals two; therefore, binary 10
means two.

Let’s illustrate the concept a little further, with a larger binary number.
Let’s try 101101. Again, we start with the rightmost digit, absent any frac-
tional part. (We don’t have a fractional part here; we could, just as easily as
we can in base ten, but we’re trying to keep it simple here.) That digit is 1.
Therefore, we know that we have one unit of one. Moving on, there is a zero
in the next rightmost digit. That means we have zero units of two, which is
our base. Moving on, we see that the next digit is 1 again. That means that
we have one unit of four, because the next multiple of two is four. Moving
on, the next digit is again 1; that means we have one unit of eight, since the
next multiple of two is eight. Moving on, the next digit is 0; that means we
have zero units of sixteen, since the next multiple of two is sixteen. Finally,
the leftmost digit is another 1; that means we have one unit of thirty-two,
that being the next multiple of two after sixteen. (That is, sixteen times
two is thirty-two.) Adding all of these together—thirty-two, eight, four, and
one—we see that binary 101101 is equal to forty-five, written 45 in base ten.

Let’s look next at octal, which is used commonly in computers. (Unix file
permissions, for example, are often entered directly using octal sums.) Octal
is base eight. To write numbers in base eight, we need a zero, plus a total
of eight digits. We’ll use 0, 1, 2, 3, 4, 5, 6, and 7. Remember, forget your
training in base ten; we’re using base eight. That means that 10 does not
mean “ten”; it means eight, nothing more nor less.

The octal number we’ll work on will be 462. Remember, this does not
mean “four hundred and sixty-two”; we’re using base eight. We’ll examine a
better system for talking about numbers in at least one base later8; for now,
try just to think of this as “four sixty-fours, six eights, and two ones.” (If this
seems cumbersome, remember that the French refer to ninety-eight as quatre-
vingt-dix-huit, which means literally “four twenties, ten, and eight,” and they
don’t seem to have any more trouble than anyone else with mathematics.)

So, as always, we start with the rightmost digit absent any fractional part.
8See infra, section 4.3.3, at 28.
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462 in Base Eight
Digits 4 6 2
Multiples of Eight (in base ten) 64 8 1
Values (in base ten) 256 48 2
Total (in base ten) 306

Table 2: A table calculating a number in place notation in base eight.

In this case, that digit is 2. We know, therefore, that we have two units of
one, and can move on. The next digit is 6; our base, eight, multiplied by one
equals eight, so we know that we have six units of eight, which is translated
into base ten by simple multiplication:

6 · 8 = 48 (7)

The next digit is 4; therefore, we know that we also have four units of sixty-
four, since the next multiple of eight after eight itself is sixty-four. Translated
into base ten, we simply multiply four by sixty-four, yielding two hundred
and fifty-six. There are no more digits, so we add our two units of one to our
six units of eight (in base ten, forty-eight) to our four units of sixty-four (in
base ten, two hundred and fifty-six), yielding a total, in base ten, of three
hundred and six.

When we move to hexadecimal, though, we have an additional problem.
Our current system provides us with only ten symbols; namely, 0, 1, 2, 3,
4, 5, 6, 7, 8, and 9. But with hexadecimal (base sixteen), we need not
ten, but sixteen symbols. What are we to do? The standard solution is
to simply begin using the letters of the alphabet, in standard alphabetical
order. Therefore, our set for base sixteen will look like this:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

And after F, of course, will be 10 (which means, remember, not “ten,” but
“sixteen”). We’ll explore a more satisfactory solution for a base intended for
daily use later9; however, until we decide that such a better solution is even
worth finding, we’ll utilize this solution for any base higher than ten.

9See infra, section 4.3.2, at 24.
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Since we’re pretty familiar at this point with the concept of the base, let’s
proceed through only one simple example and move on. For that example,
let’s translate the number 5F7 into decimal, to help us understand what it
means, since we’re not used to thinking in hexadecimal. First, the rightmost
digit (as always, absent any fractional part) is the 7, which indicates seven
units of one. The second digit, however, is F; this, remember, indicates the
number fifteen, and means that we have fifteen units of the base multiplied
by one, or sixteen. Fifteen units of sixteen is, in decimal, 240. So we add 240
to the first digit we analyzed, 7, and get the decimal number 247. The third
digit from the right is 5, indicating five units of sixteen times sixteen, or the
decimal 256. Five units of 256 is the decimal 1280. So, we add 1280 to our
current number, 247, and find that the hexadecimal 5F7 equals the decimal
1527.

Keep in mind that I’m only translating these numbers into base ten for
our convenience, because we’re accustomed to thinking in base ten. There
really is no need to do so. 46 in base eight equals thirty-eight just as much as
38 in base ten does. The 38 seems more natural to us; however, that is only
because we’re so used to numbers in base ten. Had we grown up using base
eight in the same way, we’d be stretching our minds to figure out how 38
could possibly equal the number thirty-eight, and remarking on how much
easier 46 is. (Of course, we’d probably speak about numbers differently, as
well, saying something like “four eights and six.” That, again, is a topic we’ll
address in detail later.X)

But isn’t base ten still easier? After all, in base ten, when one wants to
multiply by ten, one simply moves the decimal place over. $4.50, for example,
multiplied by ten is equal to $45.00; it’s as easy as pie. However, this sort
of property is common to all bases; that is, multiplication or division by the
base, or by a multiple of the base, is a simple matter of moving the fractional
marker over the appropriate number of digits. Base ten does not have a
monopoly on this characteristic.

For example, in base eight, 0.4 is equal to 1
2 ; that is, the digit directly to

the right of the “decimal” point (we should really, in base eight, call it the
octal point) represents units of one-eighth, just as in base ten it represents
units of one-tenth. Four units of one-eighth is one-half; therefore, 0.4 in base
eight is one-half. Let’s say that we want to multiply this number by eight.
The solution is to simply move the octal point to the right one place. Rather

XSee infra, section 4.3.3, at 28.
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than 0.4, then, we end up with simply 4, four units of one. To divide by
eight, we simply move the octal point to the left, giving us 0.04, or four units
of sixty-fourths ( 4

64). Base ten certainly has the benefits of such division;
however, when using place notation, multiplication or division by the base is
always easy in this way, no matter what the base happens to be.

By now, we should all be thoroughly familiar with the concept of bases,
and realize that the benefits of place notation depend not upon the base used,
but upon the nature of place notation itself. We also know that, while in
certain limited circumstances people may use bases two, eight, and sixteen,
the vast majority of the planet uses base ten the vast majority of the time.
However, what base ought we to use? Is base ten the best base? Or should
we adopt and use some other base for our number system?

4 The Case for Dozens
So we’ve established that place notation is the best possible system, at least
of those that have been tried so far. But is our current base the best possible
base?

4.1 Criteria of a Good Base
Before, however, we can answer the question of what would be the best base,
we must first ask another: how do we judge how good a base is? When we’re
considering a base, what criteria do we use to determine whether it’s good
or bad?

First, we have to take into account the necessary limitations of place
notation. Most particularly, we have to remember that we require a number
of symbols equal to the value of our base. So, for example, our current base
ten system requires ten symbols, zero and one for every whole number less
than the base. In our current system, those symbols are 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9. In order to limit the number of symbols we’ll need, the perfect base
would have to be small enough to ensure a manageable number of symbols.
This means that bases like eight, ten, or twelve are open for consideration,
but a base like forty or sixty is probably too high.

Second, we want to make sure that our base is large enough to ensure
that the length of numbers remains reasonable. For example, we’ve already
seen that the number which is represented in base ten by the digits “45” is
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represented by “101101” in binary; in other words, what requires only two
digits in decimal requires three times as many in binary. The base of two
is simply too small; when dealing with such small numbers as forty-five, we
certainly don’t want to have to toss around six digits. Furthermore, imagine
working with larger numbers; decimal 71,896 is represented as the incredible
“10001100011011000” in binary. Even such a relatively small number as
seventy-one thousand has become quite unmanageable. On the other hand,
in hexadecimal (base sixteen), the same number is only “118D8,” the same
number of digits as in base ten. So while we want a base which is small
enough to ensure a reasonable number of symbols, we also want one which
is large enough to produce reasonable number lengths.

Third, we want to ensure that our base is divisible by as many numbers as
possible. That is, we want a number which has many whole divisors, or whole
numbers which, when multiplied by one another, equal our base. Ideally, our
base would be an abundant number, or a number for which the sum of its
factors is greater than twice the number itself; that is, if one takes all of its
factors and add them together, the result would be greater than twice the
number. For example, the smallest abundant number is represented in base
ten by 12, the number twelve; to prove this, simply add all of its factors
together and determine whether the result is greater than twice twelve, or
twenty-four. The divisors of twelve are 1, 2, 3, 4, 6, and 12; the sum of these
divisors is 28. Twice twelve is 24; since 28 is greater than 24, we know that
12 is an abundant number.E An abundant number would be ideal because
that means we have a large number of factors. Abundant numbers, written
in base ten, include 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, and 60.

Why is it important to have a large number of divisors? Because it
makes our mathematical calculations much easier. For example, assume for
a moment that we were using base seven. Now assume that your dollar is
made up of seven cents (logical in a base seven system), and attempt to
divide your dollar in half. You cannot, unless you have a half-cent coin in
your possession. Furthermore, writing 1

2 in base seven is impossible with
exact precision; one must resort to repeating digits to infinity, which is not
only inaccurate but also extremely cumbersome. Other bases don’t have
such problems with 1

2 ; in octal, for example, 1
2 is written as 0.4, while in base

EStrictly speaking, an abundant number is one for which the equation σ(n) > 2n is
true, where σ(n) is the sum of all possible divisors of n, including n itself. But in layman’s
terms, we’ve got it right, so there’s no need to be fussy.
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seven it must be written 0.3̄.10 As another example, in base ten the common
fraction 1

3 must be written with a repeating decimal (also, coincidentally,
0.3̄), making this very commonly used fraction very difficult to work with in
this base.

Fourth, we want to make sure that our base not only has as many factors
as possible, but also has the right factors. Some fractions are used more than
others; for example, while in daily life we frequently have need to divide a
whole into thirds, we rarely have a need to divide a whole into sevenths or
elevenths. We want to make sure that these common fractions—like halves,
thirds, quarters, and so on—are easy to divide, which means that we want
2, 3, 4, and possibly others as even divisors. One result of this requirement
is that we’ve already ruled out all odd numbers (that is, numbers which are
not divisible by 2), which significantly reduces our pool of candidates.

Furthermore, these divisors and others stand out as uniquely important
for another reason. Dividing into halves is a fundamental operation which will
be performed more often than any other. Dividing into thirds and quarters
will come closely after halves in frequency. Those thirds and quarters will
themselves frequently be divided into halves, yielding sixths and eighths.
Therefore, the divisors 2, 3, 4, 6, and 8 must be looked at carefully when
examining possible bases. The base which makes these divisions easiest will
show itself to be superior in a very important way.

Some numbers are also significant simply because of their nature as num-
bers. The number one is an easy example; however, all numbers have one
as an even divisor, so we need not worry about that. 2, however, is only a
divisor of even numbers, and it is an extremely significant number. It is the
first even number, and it’s the only even number that is also prime; that
is, divisible only by itself and one. In geometry, we also require two points
to draw a line segment, making it significant in that sense, as well. Three
is another significant number; it produces the first polygon, the triangle,
which is extremely important in mathematics and geometry and is the basis
for trigonometry. Four is also very important; it is the first number that is
not prime (it is divisible not only by itself and one, but also by two), and
in geometry it is the first number of points which can produce a shape in
three dimensions, a shape which we call a tetrahedron (in layman’s terms,

10When a digit is repeated to infinity, it is common practice to simply write it once and
put a line over it. The same goes for patterns; for example, 0.342342342342 . . . could also
be written 0.342.
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this is basically a pyramid). Furthermore, it can also produce more than one
shape; in three dimensions it produces a tetrahedron, while in two it pro-
duces a square, and is the lowest number capable of such a feat. To be truly
useful, a base must include at least these basic and very important numbers
as even divisors; a base which lacks them must be considered imperfect to
that extent.

Finally, and to a much lesser extent, we ought to have some basis on
our bodies for choosing our base. Base ten is a very common base in part
because man has ten fingers on his hands. However, other bases can likewise
be justified by our biology. We have two upper and two lower limbs, providing
a justification for bases two or four; we have three knuckles on each finger,
providing a basis for base three; on each hand, excluding thumbs (which can
be used for counting the knuckles) we have twelve knuckles, providing a basis
for base twelve11 or for base twenty-four; and we have twenty fingers and toes
together, providing a basis for base twenty. While lacking some biological
basis is not a fatal characteristic, it is certainly a negative from the point of
view of selecting a base.

At this point, we have determined the most salient criteria for determining
how good or how bad a given base is. How does our current base measure
up? Should we retain it as the best possible base? Or should we discard it
in favor of a better one?

4.2 The Failures of Decimalism
We’ve identified five major considerations when determining how good or
bad a given base is:

1. Small enough to have a reasonable number of symbols;

2. Large enough to ensure numbers of reasonable length;

3. An appropriately large number of whole divisors;

4. Having the most important numbers as whole divisors;
11In case this isn’t clear: one can easily count in base twelve on one’s fingers simply by

using the thumb for counting the knuckles on the other fingers. In this way, one can count
to twenty-four (“24” in base ten or “20” in base twelve) without any difficulty, allowing
significantly more flexibility than simple finger-counting in base ten, which can only bring
one to less than half of that precision. For further demonstration, refer to figure 3 on page
1X.
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Figure 3: A diagram demonstrating an easy method of dozenal finger-
counting.

5. Some biological basis for its selection.

Our current system of base ten (which I’ll now refer to as “decimalism”) fails
on two of those five, giving it an overall grade of only 60%, which is failing
(at least it was when I went to school). If no other base can get a better
grade than this, then base ten will still remain the best base for us to choose;
however, it still wouldn’t be very good, and would be a necessary evil at best.

For the first two of these criteria, ten really isn’t a bad base at all. Ten
symbols is a reasonable number, not too great a tax on memory, and numbers
of reasonable size are of reasonable length.

However, when we arrive at divisors, ten is quite literally a disaster. It’s
not a prime number, so it contains more than simply itself and one; however,
it contains only two other divisors besides these, two and five. While two
is, of course, a requirement of any good base, five is a useful one but not
particularly necessary. Furthermore, the extremely useful divisors three and
four are totally neglected by ten. This means that the extremely common
unit of one-fourth (1

4) must be written with two digits to be accurate (0.25),
while the extremely common unit of one-third (1

3) requires an infinite num-
ber of places to be written with accuracy (0.3̄). Many other fractions are
extremely difficult to write with ten; some of these, like three and four, are
very important.
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Divisors of Ten
2 0.5
3 0.3̄
4 0.25
5 0.2
6 0.16̄
7 0.142857
8 0.125
9 0.1̄

Table 4: Divisors of ten, written out in base ten place notation.

Table 4 on page 1E shows the values, written out in base ten, of all the
single-digit fractions in base ten, except for zero and one, which are equally
simple in all bases and therefore uninteresting here. Of those eight fractions,
only half can be written out with accuracy in a finite number of digits. Of
these, one requires three digits, one requires two, and two require one. Fully
half of these fractions are irrational numbers, incapable of being written out
without an infinite number of digits.

Truly, ten must be considered an abject failure where the number of
divisors is concerned. We could have predicted this, since ten is not an
abundant number (twelve is the smallest of all abundant numbers); however,
it was useful for us to analyze the question in more detail than that prediction
would permit. Furthermore, lacking three and four as divisors, ten must
also be considered miserably inadequate concerning the number of the most
important factors that it contains. Since it cannot deal comfortably with
thirds and quarters, it cannot deal comfortably with half a third—a sixth—
or half a quarter—an eighth—either. Ten as a base could be worse, of course;
it does have some good characteristics. But it could also be much better. So
we must, after all, seek out a better base, if we can find one.

4.3 The Glory of Dozens
There are, of course, lots of other possible bases. We’ll begin with a few
assumptions, however. The first is that any base smaller than eight is too
small; it will yield numbers that are just too lengthy to deal with comfort-
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ably. The second is that any base higher than sixteen is too large; it will
require too many symbols to use comfortably. These first two assumptions
serve to eliminate the first two considerations we discussed above12 for de-
termining what makes a good base. This means that we can focus primarily
upon the issue of divisors (the biological basis issue, while interesting, is not
particularly dispositive.)

The third assumption is that, when working with bases larger than ten,
we will use capital letters for those digits which are higher than ten but less
than the base itself; so, for example, when working with hexadecimal, we will
use numbers of the following type:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10

You should recognize this convention from our demonstrations regarding hex-
adecimal numbers earlier.13 Finally, the fourth and last is that odd numbers
simply do not make acceptable bases because they lack the number two as
an even divisor. These assumptions settled, we can proceed to consider the
advisability of bases between eight and sixteen.

4.3.1 The Case for Dozenalism

To determine which of these bases would be the best to use, it’s important
that we compare them both on the basis of number of divisors simply, and
on the number of important divisors. The best way to do this is to simply
set them up beside each other and see which ones look better.

Table 5 on page 21 shows that most even numbers within our range have
precisely the same number of divisors. For example, of the five even numbers
shown, three have precisely four divisors; namely, eight, ten, and fourteen.
One of these numbers has one additional divisor, five; namely, sixteen. The
last, however, has an astounding six even divisors, and that is twelve. Once
again, this is something which we might have predicted beforehand, since
twelve is the only abundant number within our range; however, it is still
helpful to examine the numbers individually, to see precisely how significant
the difference really is.

So we’ve established that twelve is the superior base concerning the num-
ber of divisors. Let us now examine which base is superior in terms of number

12See infra, section 4.1, at 16.
13See supra, section 3.2, at 11.
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Divisors of Various Bases
8 1, 2, 4, 8
10 1, 2, 5, 10
12 1, 2, 3, 4, 6, 12
14 1, 2, 7, 14
16 1, 2, 4, 8, 16

Table 5: A comparison of divisors for even bases between eight and sixteen,
written in base ten place notation.

of important divisors. This comparison will also include which base has the
fewest irrational divisors, and how long each irrational number’s repeating
portion is. (It is, naturally, easier to deal with shorter repeating periods than
longer ones.)

Table 6, on page 22, compares the fractions of each of these proposed
bases, written out in terms of themselves (that is, in their own bases), side
by side. I think you’ll agree that this comparison is illuminating, even more
so than that in table 5. Certain interesting patterns emerge, of course; one
noticeable such pattern is that the fraction of the number immediately below
the base number itself is always 0.1̄. But while interesting, this is relatively
minor. Several quite important patterns are displayed on this table which
will have a great bearing on which base we decide is superior.

One such pattern is that the fractions involving prime numbers, excluding
two—in this table, 3, 5, 7, and 11—seem particularly troublesome. Three,
for example, causes problems in all our bases except for twelve. Five is a
mess in all our bases except for ten. Seven likewise causes problems in all
bases except for fourteen. Eleven only appears as a fraction in three of the
proposed bases; however, it results in an irrational fraction in all three. It
is clear, then, that the prime numbers are significant problems for all our
proposed bases. However, only one of these prime numbers, 3, was identified
earlier as a particularly important divisor for a good base to have. That base
which is best able to handle three, twelve (which handles three in a single
digit), therefore has a significant advantage over the rest.

Another pattern is that when the half is an even rather than an odd
number, the divisors of that half, including its own half, will also turn out
to be quite easy to deal with. Table 6 displays this fact clearly. Those bases
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Eight Ten Twelve Fourteen Sixteen
2 0.4 0.5 0.6 0.7 0.8
3 0.25 0.3̄ 0.4 0.49 0.5̄
4 0.2 0.25 0.3 0.37 0.4
5 0.1463 0.2 0.2497 0.2B 0.3̄
6 0.125 0.16̄ 0.2 0.249 0.2Ā
7 0.1̄ 0.142857 0.186A35 0.2 0.249
8 0.1 0.125 0.16 0.1A7 0.2
9 0.1̄ 0.14 0.17AC63 0.1C7
10 0.1 0.12497 0.158 0.19̄
11 0.1̄ 0.13B65 0.1745D
12 0.1 0.1249 0.15̄
13 0.1̄ 0.13B
14 0.1 0.1249
15 0.1̄
16 0.1

Table 6: A comparison of fractions for even bases between eight and sixteen.
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which have odd halves—in this table, ten and fourteen—do not benefit from
the divisors of their halves. However, those which have even halves—eight,
twelve, and sixteen—reap the rewards by having rational, and short, divisors
of those halves. Let’s look at sixteen and twelve as good examples of this.
Base sixteen has a half of 8, the divisors of which are four and two. Two will
be single-digit for all our bases, since they are all even, so let’s take a look
at four in base sixteen. It’s a simple, rational number, written out with a
single digit.

Even more impressive in this regard is twelve. Base twelve has a half of
six; six has the divisors two and three. Again excluding two, which is an
advantage for all even bases, this fact makes twelve the only one of our bases
which has the extremely important third as a rational number—and that
in a single digit! Truly, twelve stands out pretty clearly in this table as an
extremely good base, at least as far as divisors are concerned.

Now, all of these bases have many irrational numbers in this table. Sixteen
stands out in this regard, as nearly 70% of its fractions are irrational; in light
of this, it fails dismally as a proposed base. Eight and fourteen come next,
with fully half of their fractions irrational. This is clearly too many, and
we must reject them as bases on this account. Ten is also a terrible failure,
with approximately 40% of its fractions irrational. Twelve stands out as the
clear winner, with only a little more than a third, four, of its eleven sub-base
fractions being irrational.

None of these totals, of course, strike one as exceptionally good; however,
it’s clear that one is better than all the others. Furthermore, we must look
not only at how many irrational fractions our proposed base has, but also
at which of those fractions are irrational. In this regard, twelve once again
emerges as a singularly excellent base.

In base ten, the extremely common third is a cumbersome irrational num-
ber. This is likewise the case with half of a third, or a sixth, which computes
to a number even more cumbersome. Furthermore, accurately writing the
also common fourth requires two digits, and half of a fourth, or an eighth,
is likewise rational but requires three digits to write. In base twelve, on the
other hand, both the third and the fourth are simple, perfectly rational, sin-
gle digits (0.4 and 0.3 respectively). Half of a third, or a sixth, is likewise
a simple, rational, single digit (0.2). Half a fourth, or an eighth, is a sim-
ple and rational 0.16, requiring one fewer digit to write accurately than the
same fraction in base ten. Base twelve really shines by making common, use-
ful fractions, many of which are also extremely important mathematically,
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very easy to work with.
To sum up: base twelve has the largest number of whole divisors, as well

as the largest number of useful divisors. It alone among reasonable choices
for a number base keeps the extremely important fraction of a third rational,
and does so in a single digit. It also keeps the vitally important quarter down
to a single digit, and it makes the halves of a third and a quarter—a sixth
and an eighth respectively—extremely easy to work with. It also includes all
the mathematically important lower numbers as whole divisors, and is tied
for the fewest number of irrational fractions among all reasonable bases.

This examination yields an inescapable conclusion: the best possible base
for a number system written out in place notation is twelve. Therefore, we
will adopt twelve as such, and we shall immediately begin to reap the benefits
of having selected such an excellent base. There are, however, a few other
questions which still need to be addressed; these will be the subject of the
next few sections.

4.3.2 Possible New Digits

Up until now, we have been utilizing a simple method for representing the
additional symbols needed for bases higher than ten: we’ve simply used
capital letters in alphabetical order. This is the pattern used by computers for
hexadecimal; however, while it is good for computers, it isn’t good for men.
Numbers are fundamentally different from letters; they represent quantity,
not sounds, and consequently look different from letters. Furthermore, the
letters “A” and “B” (we only need two additional symbols for base twelve)
simply don’t blend aesthetically with the other numbers.

One suggestion has been more or less universally adopted; namely, the
replacement of the “decimal point,” which separates the whole from the frac-
tional parts in a number which has both, with a “dozenal point.” That
dozenal point has been represented by the semicolon, “;”. From now on,
dozenal numbers can be easily identified whenever they contain that semi-
colon. The dozenal point performs the same function in the dozenal system
as the decimal point does in the decimal; that is, it separates the whole part
of the number from the fractional part. As an example, the number “three
and a half” is written in dozenal as 3;6.

As for the two new digits, many different solutions have been tried. There
are two main streams of dozenalism (that is, the system which uses base
twelve, based on the dozen), the American and the English. Neither has
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officially endorsed any set of new digits; however, the general usage of the
two streams is pretty well established, though individual opinions often vary.

The Dozenal Society of America (DSA) has advocated several different
symbols. Originally, under the influence of F. Emerson Andrews (the father
of modern dozenalism), the symbols X and E were almost universal. The X
was a nod to the Roman numeral of the same shape, and the E was intended
to evoke the the word “eleven.” However, these symbols are bulky when used
with other digits (consider 4X;E7, for example), and also fail to blend well
with the other digits (which is true for almost all the attempts at new ones).
For a time, the DSA used * and # (yes, really), because they appeared on
the standard Bell Telephone phone, and therefore would be familiar to most
Americans. These days, the DSA has returned to the digits they began with,
very stylized versions of X and E; roughly, they look like χ and ε. All of these
proposed digits, however, suffer from the same problems as plain X and E;
namely, they just don’t blend well with the other digits. A different set of
digits would be preferable.

Our brethren across the pond, however, arrived at an excellent solution.
It seems that Sir Isaac Pitman, inventor of Pitman shorthand, was also a
dozenalist, and he devised some proposed characters for the two additional
digits that the dozenal system requires. These two symbols are variations on
those for 2 and 3; they have the shapes of numbers, and thus blend in quite
well with the other digits which we already use. These symbols are X and
E.14 Furthermore, these are the symbols utilized by Tom Pendlebury of the
Dozenal Society of Great Britain, whose monumental work TGM is pivotal
in the dozenal community and which we’ll discuss at some length shortly.15

Now, many people have different opinions on these characters. Some
support the other major opinions already discussed here; others advocate
some variations on X and E, similar symbols but not identical; some even
argue for a completely new set of digits, including for 0–9. However, the most
reasonable solution, which uses digits most likely to be familiar to learners,
and which blend best with the digits we already have, yet which presents
only a slight learning curve to prospective dozenalists, is the solution that
we have proposed here. A simple number line, displaying the characters in

14The symbols you see in this document—namely, X and E—were created by the author
in Donald E. Knuth’s Metafont font design program. The author is not a type designer;
while he believes he’s arrived at decent characters, any and all improvements would be
most appreciated. See the dozenal package at http://www.ctan.org for more information.

15See supra, section 5.2, at 38.
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counting order, goes as follows:

1 2 3 4 5 6 7 8 9 X E 10 11. . .

There are some objections to these symbols; however, the most significant
one appears to be the difficulty of representing them in seven-segment dis-
plays. Seven-segment displays are, of course, quite common in devices such
as calculators, alarm clocks, gas pumps, and the like. The argument against
the Pitman characters on this ground is that, since these displays are quite
widespread, it would be preferable to choose characters which can be easily
represented on such displays. However, for the reasons below, this argument
is insufficient to undercut the venerable Pitman characters.

In the first place, it is perfectly possible, and indeed easy, to represent
these symbols in a seven-segment display. Some argue that the only possible
representation of X in seven segments is indistinguishable from two. However,
there are a number of possible realizations for X in seven segments, many of
which are not ambiguous. One such suggestion, which the author deems
quite aesthetic, is displayed in figure 7 on page 27. Some further suggest
that the confusion between the representation of E and that of the letter
“E” renders E undesirable. However, “E” rarely appears on seven-segment
displays; occasionally it appears on simple calculators indicating an error,
but that function could just as easily be fulfilled by some other character.
All in all, the limitations of the seven-segment display do not really affect
the suitability of X and E.

Furthermore, seven-segment displays are antiquated already and are be-
coming more so by the day. Even common microwaves tend to have sig-
nificantly more versatile displays in this day and age. Over time, we will
see fewer and fewer such displays, until in the fairly near future they will
probably no longer exist, at least in any significant numbers. Of course,
they exist now, and dozenalists need to take that into account. However,
sufficient account of these older displays has already been taken simply by
devising acceptable representations for the new numerals on such displays.
It’s certainly important to account for older technology; however, such older
technology presenting such minimal difficulties should not stand in the way
of an otherwise appropriate solution.

Is it possible that better symbols could be determined? Perhaps. These
symbols may not be perfect, and many will be unhappy at this author’s advo-
cacy for them. However, they are well-known within the dozenal community,
well-established, easily produced, and well integrated with current decimal
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Figure 7: A figure showing simple seven-segment displays for all numerals,
including the Pitman characters X and E.

digits. As such, they blend well with current digits, are easily recognized as
numbers, and present the least amount of difficulty to beginning dozenalists.

Dozenalism requires unity in the question of additional digits. Without
consistently presenting the new digits, it will always be difficult to convince
others of the viability, and indeed the superiority, of the dozenal system.
Those symbols most likely to gain such universal acceptance are those with
the largest body of already existing work; recognized by the largest body
of people; most easily drawn and produced by those knowing our current
number system; and well-integrated with the current digits. The Pitman
characters are the answer to this need. Therefore, though they may not be
perfect, they are what dozenalism requires.

It is this author’s hope that, given their already widespread use and
their use in the pivotal work of Pendlebury, the dozenal community will rally
around these digits, and the dozenal movement can progress with a consensus
concerning its extra figures. With suitable digits and an agreement to use
them, dozenalism will be a mathematical force to be reckoned with.
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4.3.3 The Need for Better Words

As mentioned above,16 even though we’ve found a base that is far superior to
our current system, we still need to find a new way to talk about numbers.
While talking about them is certainly manageable with our current language,
anyone who works frequently with numbers—that is, almost everyone—would
quickly find our current system cumbersome, particularly when dealing with
numbers greater than 1000 (decimally, 1728).

Traditionally, of course, the number “twelve” has been referred to as a
dozen; indeed, this is precisely where the name “dozenalism” comes from. A
dozen dozen, written in dozenal as 100 and in decimal as 144, was known as
a “gross”; a dozen gross, 1000, was traditionally known as a “great-gross.”
Beyond that, however, there are no more specialized terms. We could speak
of a dozen great-gross, or a gross great-gross, or three dozen gross great-
grosses, and still manage to reap many of the fantastic benefits of the dozenal
system; however, as mentioned above, we’d quickly find it cumbersome to
speak about the calculations that our number system has made so much more
efficient.

In the decimal system, on the other hand, we have a variety of differ-
ent terms. This is not to say that our current system makes much sense; it
doesn’t. Furthermore, it varies considerably between British and American
usage. For example, in American English a “billion” is a thousand times a
million, written out 1,000,000,000. However, in British English, this is a “mil-
liard,” and a billion is rather a million times a million, or 1,000,000,000,000.
However, there is still a standard way of referring to numbers, and that stan-
dard is reasonably short and easy to use. No such system exists for dozenal,
at least in the common parlance.

However, Tom Pendlebury of the Dozenal Society of Great Britain has
devised an excellent system which takes all the guesswork out of counting
in dozenal. He provides a quick, easy way to say any given number, as well
as a rational and standard way of handling powers of a dozen (the way that
“thousand,” “million,” “billion,” and so on in decimal simply do not). While
many dozenalists have invented such a system, Mr. Pendlebury’s is by far
the most cohesive and rational, and because of its association with TGM,17

it provides the best chance of presenting a single and coherent system to a
decimal world.

16See supra, at 15.
17See infra, Section 5.2, at 38.
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Basic Dozenal Counting
1 one 11 onezen one
2 two 12 onezen two
3 three 13 onezen three
4 four 14 onezen four
5 five 15 onezen five
6 six 16 onezen six
7 seven 17 onezen seven
8 eight 18 onezen eight
9 nine 19 onezen nine
X ten 1X onezen ten
E elv 1E onezen elv
10 zen; onezen 20 twozen

Table 8: Basic Pendlebury counting in dozenal, from one to twozen.

As can be seen in table 8 on page 29, this system has a number of ad-
mirable qualities. First, it changes as little as possible of the already existing
numbers; one through ten are totally unchanged, and eleven is shortened to
elv simply for the convenience of having a single syllable for higher numbers
such as elvzen. The word for “twelve” is clearly derived from “dozen,” but
is more versatile than either “twelve” or “dozen” for use in compounds, such
as “fourzen seven” (a clear winner over competitors “four dozen and seven”
and “fourtwelve and seven”).

Furthermore, our current decimal system of counting contains an odd
irregularity: the teens. Most numbers are counted by putting on a simple
prefix for the number of tens, and then stating the number of ones. Forty-
seven, eighty-six, seventy-four—all of these work the same way. However,
the numbers higher than ten and less twenty are a notable and confusing ex-
ception. First, eleven and twelve follow no pattern whatsoever, being totally
unanalyzable roots. Second, thirteen through nineteen reverse the pattern,
instead using a suffix when all eighty other comparable numbers use a prefix
as described above. The Pendlebury dozenal system solves that irregularity
and solves it admirably, using still easily pronounced number names arranged
in a systematic way.

Table 8 (on page 29) makes it easy to count all the numbers from one (1)
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Full Pendlebury System
Prefix Number Zeroes Exp. Decimal
Zen 10 1 101 12
Duna 100 2 102 144
Trina 1,000 3 103 1,728
Quedra 10,000 4 104 20,736
Quen 100,000 5 105 248,832
Hes 1,000,000 6 106 2,985,984
Sev 10,000,000 7 107 25,831,808
Ak 100,000,000 8 108 429,981,696
Neen 1,000,000,000 9 109 5,159,780,352
Dex 10,000,000,000 X 10X 61,917,364,224
Lef 100,000,000,000 E 10E 743,008,370,688
Zennil 1,000,000,000,000 10 1010 8,916,100,448,256
Zenzen 10,000,000,000,000 11 1011 106,993,205,379,072
Zenduna 100,000,000,000,000 12 1012 1,283,918,464,548,864
. . .
Dunduna 22 1022 1.144754599. . . x 1028

Table 9: The full Pendlebury system of dozenal counting.

to elvzen elv (EE). However, when we move on to a full gross (100), we still
seem to have the same problem of running out of words. But Pendlebury
again presents an excellent solution, which can be found in its entirety in
table 9 on page 2X.

Notice how intensely rational this system is. The name of each power of
a dozen is based on the number of zeroes that must be added to it. The first
is named “zen,” as already examined; this word is derived from “dozen,” and
allows not only for a reasonable word on its own but for easy compounding
with other words, such as “threezen seven” for 37 and “sixzen elv” for 6E.
Otherwise, however, all the names are clearly related to the number of ze-
roes that must be placed after the one for the simple power of zen; this is
an immense improvement over the current decimal system of naming, as is
demonstrated in table X on page 2E.

For example, we can see clearly that “duna” evokes the notion of “two,”
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Pendlebury and Decimal Compared
Power Pendlebury Current Number
1 Zen Ten 10
2 Duna Hundred 100
3 Trina Thousand 1,000
4 Quedra Ten Thousand 10,000
5 Quen Hundred Thousand 100,000
6 Hes Million 1,000,000
7 Sev Ten Million 10,000,000
8 Ak Hundred Million 100,000,000
9 Neen Billion 1,000,000,000
X Dex Ten Billion 10,000,000,000
E Lef Hundred Billion 100,000,000,000
10 Zennil Trillion 1,000,000,000,000
11 Zenzen Ten Trillion 10,000,000,000,000
12 Zenduna Hundred Trillion 100,000,000,000,000
13 Zentrina Quadrillion 1,000,000,000,000,000

Table X: Comparing the Pendlebury system of powers with the American
decimal one.

while being different enough to make it clear that it’s not referring simply to
the number two. Similarly, “trina” evokes three, “quedra” four, and so on,
each word being derived from well-known Latin or Greek roots which should
be familiar to most English speakers, and will be easily learned by others.
“Lef” is clearly related to “eleven,” while “zennil” is related to the dozen
word “zen,” while clearly showing that we’re referring here to a dozen zeroes
and not merely to one. After that, one simply adds “zen” to the appropriate
prefix to continue getting the larger and larger numbers.

In our current system, on the other hand, the words denoting the various
powers of ten are not obviously related, if they’re related at all, to the number
of digits the number will contain. Table X on page 2E makes this reality quite
clear. While the words “billion” might evoke the meaning of “two,” beginning
as it does with the “bi” of “bicycle,” “biennial,” and any number of other
words, in reality it has nothing to do with two; a “billion” means that the
number has nine zeroes. “Ten billion,” on the other hand, means that one has
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ten zeroes, not that one has ten plus two zeroes, as the name might imply. A
“trillion” has nothing to do with having three zeroes in the number, nor does
it have anything to do with being three times the last number, the billion;
rather, it simply means that one’s number has a dozen zeroes at the end.
Similarly again with the next step up, the quadrillion. The British system
varies somewhat from this, where what Americans call a billion would be
called a “milliard,” but it does nothing to solve this fundamental problem.
Clearly, the Pendlebury system for dozenal counting is vastly superior to the
current system of decimal counting. We will use it from this point onward.

That takes care of all numbers which are greater than zero; how do we
handle those numbers which are less than zero? In the decimal system, these
are called simply “decimals,” which are essentially fractions written on a
single line. Fractional parts, called in our current system “decimals,” work
exactly like the whole parts, except backwards. For example, 0.4 is, in base
ten, often read “zero point four”; it is often, however, also read by its value,
which is four tenths ( 4

10 , or
2
5). It is, essentially, 4x10−1. In other words, each

place to the right of the “decimal point” indicates another negative power
of ten. The first place indicates tenths; the second hundredths; the third
thousandths; the fourth ten thousandths; and so on. When we see a complex
number like 0.4367, we can not only read it in the common way, as “zero
point four three six seven,” but also by saying “four thousand, three hundred
and sixty-seven ten thousandths,” or 4,367x10−4. One can see, therefore,
that the question of fractional parts and the question of negative powers of
the base is the same.

Dozenal numeration provides the same sort of number, of course, utilizing
the semicolon as the “dozenal point.” To facilitate differentiating between
base ten and base twelve numbers, we shall follow Pendlebury once again
and refer to these fractional parts as “zenimals,” and the semicolon as the
“zenimal point.” Just as the decimal point is pronounced “point” in common
parlance, the zenimal point is pronounced “dit.” For zenimals, the first place
to the right of the zenimal point means twelfths; the second, grossths; and so
on. So the zenimal 0;4, normally read “zero dit four,” could just as easily be
referred to as “four twelfths” (or its equivalent, 1

3). In this way, it is precisely
as easy to work with as our current decimal system.

However, Pendlebury’s excellent system provides a still better way to refer
to such numbers. We have seen that “zen” (or “zena”) refers to 101, expressed
in the decimal system as 12. Rather than make us bother with a whole new
system for 10−1, Pendlebury’s system indicates simply affixing an “i” to the
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positive power name and resting at that. So 0;4 (“zero dit four”) is also
easily expressible as four zenis, the same way that 40 is easily expressible as
four zena (though this will normally be abbreviated to “fourzen”). Similarly,
0;04 is four dunis, 0;004 is four trinis, and so on. When presented with a
more complex zenimal like 0;579, the same principles allows one to refer to
this as five duna sevenzen and nine trinis. It is, as always, a simple matter
of counting the powers of zen; in this case, the number of digits to the right
of the zenimal point. 0;0008 is not eight ten thousandths; it’s eight quedris,
just as 80,000 is eight quedras. The dozenal value of π, 3;18, is simply three
and onezen eight dunis. It is a system quite admirable in its simplicity.

This also greatly facilitates speaking about multiplication and division by
a power of the base. As an example, let’s take the current year in dozenal,
11E5 (which is “2009” in decimal). This would be pronounced, in the Pendle-
bury system, “one trina, one duna, elvzen and five”; however, doubtlessly a
shorthand would arise similar to the one used in the last century for deci-
mal years, and this would often be pronounced simply “onezen one elvzen
five.”18 To multiply this by one trina, or 1,000, we simply move the implied
dozenal mark at the end of the number three places to the right, just as if
we were moving a decimal point. So 11E5 multiplied by a trina, 1000, equals
1,1E5,000.

We could just as easily, however, decide to multiple 11E5 by a trini, which
is precisely the opposite. That is, instead of multiplying by 103, we multiply
by 10−3. In that case, we just move the value three points to the left instead
of the right, giving us 1;1E5. All the powers of zen can be treated thus; so,
for example, a quedra equals 104, or moving the dit four places to the right,
while a quedri equals 10−4, or moving the dit four places to the left. There
is no need to refer to multiplying by one hundred-thousandth; one is simply
multiplying by one queni.

This eminently simple and logical system will greatly facilitate mathe-
matics of all types.

4.3.4 Some Applications of Dozenal Numeration

We’ve established, above,19 that the dozen is the best base in the abstract;
but what particular applications of dozenalism would really make our math-

18This is similar, in other words, to pronouncing “1995” as “nineteen ninety-five” rather
than “one thousand, nine hundred, and ninety-five.”

19See supra, Section 4.3.1, at 20.
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Figure E: A figure displaying the clock in dozenal numeration.

ematical lives easier and more effective? How long before we begin seeing
real effects from its adoption?

Almost immediately; even waking up in the morning would be a new and
easier experience. Figure E on page 32 displays clearly the advantages in
time measurement that the dozenal system would very quickly bring. The
clock is divided into twelve units (corresponding to five minutes), and each of
those units are divided into twelve smaller units (each of which lasts a little
less than thirty seconds). The advantages of the dozenal system for time are
clearly illustrated.

No longer is there a need for strange machinations, by which the twelfth
of the hour must be multiplied by five in order to come to the number of
minutes. Rather, the twelve of the hour is the first digit to the right of the
dozenal point. What we would now, in the decimal system, write as “4:30”
would be written instead as “4;6”; the shorter hand points to the hour, and
the longer hand points to the twelfth of the hour (the zeniHour), and so the
number at which it points can be added to the time with no ambiguity. A
quarter past the hour is equal to a quarter, 0;3; so a quarter past five is 5;3,
while a quarter until six is 5;9, the larger hand of the clock pointing to the
3 and the 9, respectively.

Furthermore, so-called “military time,” more properly called “twenty-four
hour time” (or, in the dozenal system, simply two dozen hour time) would
cease to require any mental mathematics whatsoever. Presently, one must
take the number of hours after noon and add that to the decimal number
12; therefore, 19:00 in decimal refers to 7:00 post meridiem, or p.m., despite
the fact that the number contains no digit 7. In the dozenal system, on the
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other hand, making a time p.m. is a simple matter of adding a 1 to the left
of it. So 7;00 in dozenal is 7:00 a.m.; 17;00 in dozenal is 7:00 p.m. The whole
system is much more intuitive and useful than our current decimal system,
which we mangle in order to apply to a dozenal system of timekeeping.

This furthermore makes shift management and similar tasks immeasure-
ably easier. Currently, a factory running three equal shifts throughout the
day must begin and end them at odd, uneven hours; the first shift, for ex-
ample, may run from 7:00 a.m. until 3:00 p.m., the second shift until 11:00
p.m., and finally the third back to 7:00 a.m. The dozenal system makes a
three-shift day make sense. If the first shift begins at 8;00, then the second
would begin at 14;00, and the third at 00:00 (or 20;00, whichever way of
writing it is preferred). In the dozenal system, this is simple addition:

8 + 8 = 14 (8)

14 + 8 = 20 (9)
There is no need to add five to seven in order to get twelve, then go back to
zero and add three more in order to arrive at 3:00 p.m. for the eight-hour
shift. There is no need for a.m. or p.m. at all, because going from morning
to afternoon is a simple matter of adding a one to the left of the number.

All in all, our system of measuring time is much better given to dozenal
than to decimal numeration, and switching to dozenal numeration consis-
tently will make our management of that time much easier.

Another boon to human endeavor will come from the application of
dozenal numeration to the study of statistics, and any other study which
requires the use of percentages. Percentages, of course, are simple expres-
sions of parts per hundred; when we say that 33% of the population voted for
such-and-such, for example, we are saying that out of every hundred voters,
33 of them voted for the proposition. This system is logical when the inferior
base of ten is being used; for the dozenal system, however, it clearly will not
do.

Rather than percentages, the dozenal system offers pergrosses; that is,
parts per gross. All the many advantages of the easily dividable base of
twelve will immediately arise to greet the ecstatic statistician. If he wants
to say that two-thirds of the population preferred his particular candidate,
there is no need for rounding or repeating fractions; he simply says that 0;4%
of the population preferred it. Comparison of results will be much easier, as
he can easily compare the actual numbers to all the even, clean, and rational

33



Dozenal Multiplication Tables
1 2 3 4 5 6 7 8 9 X E 10
2 4 6 8 X 10 12 14 16 17 1X 20
3 6 9 10 13 16 19 20 23 26 29 30
4 8 10 14 18 20 24 28 30 34 38 40
5 X 13 18 21 26 2E 34 39 42 47 50
6 10 16 20 26 30 36 40 46 50 56 60
7 12 19 24 2E 36 41 48 53 5X 65 70
8 14 20 28 34 40 48 54 60 68 74 80
9 16 23 30 39 46 53 60 69 76 83 90
X 18 26 34 42 50 5X 68 76 84 92 X0
E 1X 29 38 47 56 65 74 83 92 X1 E0
10 20 30 40 50 60 70 80 90 X0 E0 100

Table 10: A table depicting dozenal multiplication tables from 1 to 10.

divisors that inhere in the base of twelve but not that of ten in a blink of an
eye. What rounding he does have to do will have more probability of being
cleanly rounded to a clean, even fraction. And finally, the greater divisibility
of dozenal 100 (the gross) as compared to decimal 100 (the hundred) will
permit much easier calculation of pergrosses than percentages in the first
place, as the ratios will benefit from twelve divisibility in the form of easier
reducibility. Furthermore, no change even in his writing will be necessary;
since both one gross in the dozenal system and one hundred in the decimal
system are written 100, the symbol “%” will continue to serve perfectly well
to express pergrosses.

Multiplication tables will also be made easier, as a greater number of easy
patterns for easy multiples appears. As in the decimal multiplication tables,
the two columns and the base column are easy. Also, the column for half the
base (decimal 5, dozenal 6) is also quite simple. In addition to this, however,
the threes, fours, and eights follow definite and simple patterns. For the
three column, for example, the multiples always follow a pattern of ending
in 3, 6, 9, and 0, in that order. Similarly for the four column, they end in
4, 8, and 0, in that order. And again, in the eight column, the answers end
in 8, 4, and 0, in that order. The nines are similarly simple, ending in 9, 6,
3, and 0, in that order. All in all, a full half of the columns in the dozenal
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tables follow a simple and set pattern.
Compare this to the decimal multiplication tables. The three column

follows no discernible pattern; while the four column does, it’s a five-number
pattern, only repeated twice in the entirety of the table (4, 8, 2, 6, 0). Six
is the same way (following 6, 2, 8, 4, 0), as is eight (8, 6, 4, 2, 0). Nine
follows a pattern, but it is a full ten digits long, from nine to zero, meaning
it only repeats once in the entirety of the table. (In the dozenal table, E
has the same advantage.) The dozenal multiplication tables not only extend
to higher numbers, but are also simpler, containing more patterns and thus
presenting a shallower learning curve.

Prime numbers will also be much easier, for all prime numbers in dozenal
will end in 1, 5, 7, or E.1X This means that all prime numbers greater than 3
are contained in the set (6n ± 1); in other words, the position of all prime
numbers higher than 3 is governed by the number 6, a very important number
in the dozenal base. It further means that a prime number must end in a
prime number; notice that the 1, 5, 7, and E we mentioned earlier are all
primes. In the decimal system, on the other hand, primes can not only end
in 1, 3, and 7, they can also end in 9, which is not a prime number. This
not only appears less orderly to the human mind; it also makes identifying a
prime number more difficult.

By this point, we have examined different systems of numbers and differ-
ent number bases for place notation; we have selected the best possible base
of all reasonable bases; we have determined what symbols can best be used
to represent our numbers; and we have determined what words can best be
used to express numbers in our chosen base. The system we have arrived
at is clear, logical, and mathematically sound. However, there still remain
objections to the system as it stands. Let us proceed to those objections,
answering them in turn, and see if any are sufficient to prevent the adoption
of the excellent number system we’ve examined up to now in these pages.

1XIn mathematical terms, all prime numbers are members of the set 2, 3, (6n± 1)n ∈ N.
Don Hammond has shown this in his brief Base Twelve and the Prime Numbers, http://-
www.dozenalsociety.org.uk/leafletsetc/sixesprimes.html, whence this minimal prime set
was taken.
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5 Objections to Dozenalism
Difficult as it might be for a committed dozenalist like the present author to
imagine it, some are still not satisfied that a common switch to the dozenal
system would be appropriate. Some of the most common objections have
been collected here.

5.1 The Cost of Conversion
Possibly the most common, and also the most basic, objection to public
adoption of the dozenal system is that the effort simply isn’t worth it. Math-
ematics textbooks would need to be reprinted; people would need to be
familiarized with the new numbers; everything, in effect, would need to be
redone. Why bother? When most people have never even noticed that the
current system is base ten, much less that there might be a better base, why
should we dedicate such an effort to it, particularly when that effort would
probably be greater than we can bear?

Ultimately, the answer to this objection is always the same: if something
is better, then we ought to pursue it. We have amply shown, even in this
short document, that the dozenal system is simply better. So we ought to
pursue its establishment.

More particularly, however, several responses can be made.
First, we certainly would need to reprint mathematics textbooks, and

basically all books, so that their page numbers would conform to the new
system if nothing else. However, this would not be prohibitively expensive,
or in fact expensive at all, because it need not be done all at once. Indeed,
in many cases it need not be done at all.

For textbooks, for example, the easiest way to transition to the new
system is simply to print all new textbooks with the dozenal standard, and
allow the old textbooks to retain their older, inferior decimal numbering.
The same would be true of all books. This author, for example, has a fairly
extensive library, nearly all of which is printed assuming a decimal numbering
system; why should he be required to purchase all new copies of these books?
Better to leave them as they are; the new books I purchase will have dozenal
measuring, and eventually the decimal books will be phased out, continuing
as collectors’ items and hobbyists’ trophies.

Would it be difficult for people to know and be proficient in two number
systems simultaneously, while the transition is taking place? Absolutely not.
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Similar transitions, of a similarly or even more greatly extensive variety,
have been successfully accomplished many times and in many countries. An
excellent example is the recent metrication in Canada. Canadians were, in the
not distant past, just as wedded to feet, miles, gallons, and pints as we here in
America are. However, it was decided (erroneously) that metrication was the
appropriate course, and people began to think in both the imperial and the
metric systems, and gradually the imperial system was phased out, resulting
in the thoroughly metricized state that currently resides on our northern
border. We think in our measurements nearly as much as we think in our
numbers; why should not the same sort of process work for dozenalization?

Similarly, in Great Britain people had been used to the daily use of
a tripartite, multi-base system of currency, known commonly as “pounds-
shillings-pence,” or £.s.d. In this interesting (though not to say ideal) sys-
tem, there were twelve pence to a shilling and twenty shillings to a pound.
There were also a myriad other divisions of currency in common use, includ-
ing guineas, crowns, florins, and farthings, among others. The British people
were quite used to this system, and many were quite fond of it, particu-
larly of the enormous number of divisors that the 180 (240 in decimal) pence
permitted them. However, in 1180 (1968), decimalization of the currency
was declared; in the future, there would be one hundred pence to a pound.
Yet the British people managed, despite having to make such an enormous
change in their everyday lives.

Perhaps an even more wide-ranging alteration was the Turkish transition
from using the Arabic alphabet to using a version of the Roman. This oc-
curred in 1148 (1928). For centuries, Turks had written their language in
the Arabic script. All their books were printed in Arabic; they had only
written Arabic; they were all thoroughly used to Arabic. However, it was
determined that a modified Roman alphabet would be a better fit for the
Turkist language. Therefore, the change was introduced. Books from then
on were printed in the new alphabet; children who had been taught Arabic
transitioned into learning Roman; adults learned the new alphabet, as well.
For a time, the two alphabets were in daily use, as people read their old
Arabic books and then turned to their newer Roman ones. Yet they did it,
because they determined that it would be better than what they had before.

Can we honestly say that a transition to dozenal would be any more
difficult than this? Let us not seek what is easy; let us rather seek what is
good. For number systems, dozenal is good. So let us pursue it.
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5.2 The Metric System
A still more common objection is the metric system. If we based all our
numbers on twelve, the argument goes, we would lose the enormous benefits
that the metric system has brought to the whole world, except for the United
States, which still muddles along quite happily without it. While it is true
that the dozenal system and the current metric system would not get along,
the dozenalist’s response to this is essentially an elaborate “no great loss.”
Let us examine some of the reasons for this riposte.

5.2.1 The Faults of the Metric System

The metric system itself is inherently faulty. Not only are its most ba-
sic measurements poorly chosen, but those poorly chosen measurements are
sometimes completely wrong. Furthermore, it ignores key natural quantities,
making them extremely difficult to work with. Finally, the basic quantities
of the metric system are faulty; they do not correspond to normal human
experience, requiring the invention of ad hoc customary measurements for
purposes of dealing with the real world, such as the “metric foot” and the
“metric pound.”

The metric system is, supposedly, based entirely on the meter. (In reality,
it is based upon several different measurements, including the meter. For
example, the gram is one thousandth of a cubic decimeter.) The meter itself
is supposed to be a universal measurement, dependent upon no particular
nation, independently verifiable in its length, and scientifically based. The
French revolutionaries who devised this system believed that one fraction of
the circumference of the earth was an appropriate way to choose this length.
Their “meter” was one ten thousandth of the distance from the equator to
the north pole.

Or they thought it was, anyway. In reality, they had an inaccurate mea-
sure of the distance from the equator to the pole, and thus the meter is
no such thing. Not only did they measure the distance from London to
Barcelona, and extrapolate to the total distance from that, but they also
assumed that the earth is a perfect sphere, which it isn’t. However, by the
time anyone realized this the meter was permanently enshrined by a plat-
inum bar sitting somewhere in Paris, and the virtues of this platinum bar
as an “objective” standard were being trumpeted throughout the world. So
metricists, desperate to uphold the standardization of said platinum bar, fi-
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nally determined a new way to define the meter, which would keep it the size
that it had always been (that is, not one ten thousandth of the distance from
the equator to the pole, but rather the same length as this platinum bar in
Paris): they measured that platinum bar with a laser and defined the meter
based on the speed of light. In decimal numeration, the meter is defined
as the distance travelled by light in 1

299792458 seconds. Yet this totally arbi-
trary measurement is still trumpeted as the basis for a rational and scientific
system of measurement.

Furthermore, many of the standard measurements that people claim to
be metric are absolutely not, but simply metricizations of older, standard
measurements. An example is 35mm film, which is really 13

8 inch film.1E The
real measurement of the film is not, in fact, 35mm, but 34.975mm. Yet the
metricists will routinely take credit for this extremely versatile and well-sized
standard film, despite the fact that it was standardized on imperial units and
only approximately and clumsily transferred to metric ones.

Furthermore, as a “scientific” base for a system of measures, the metric
system truly fails miserably. Take the most fundamental physical quantity of
life on earth, the acceleration due to gravity. The metric system makes this
an awkward 9.80665m/s2, usually abbreviated to 9.81. Granted, in imperial
units the quantity is equally awkward, equalling 32.175ft/s2; however, that
fact does not make the metric quantity any more useful. The metric system
further makes absolutely no provision for time whatsoever; it neither makes
time conform to its otherwise decimal divisions, nor does it attempt to define
a standard unit of time in terms of its decimal divisions. Time, rather,
continues to be mixed-base, with 20 (twozen) hours in a day divided into 10
(zen) units of five minutes each, for a total of sixty minutes in an hour. The
metric system’s neglect of time, through the lens of which men by necessity
view everything, is an enormous failure considering its claims to being a
modern and scientific system.

Even so, the supposed superiority of the metric system is belied even
by those who use it. It is common practice in metric countries to refer
to weights in so-called “metric pounds,” which are half a kilogram, as well
as to use “metric pints,” equal to half a liter, for determining appropriate
drinking quantities. Not to mention that boards are sold in standard lengths
of 120cm, not in simple meters, because dividing a meter-long board into

1ESee, e.g., Joe McGloin, Half-Frame Cameras, 11E1, available at http://www.subclub.-
org/shop/halframe.htm. Last accessed 20 May 11E5.
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thirds is unreasonably difficult given its base in ten.20 And the thickness of
the wood is measured as a “thumb,” or 2.4cm!21 If the very people who use
the metric system are forced to devise such new units on a regular basis,
perhaps that speaks for the metric system’s value for actual, daily use.

So once again, the dozenalist must respond to this objection with words
to the effect of “no great loss.” In fact, however, losing the metric system
could well be an enormous gain. The ingenuity of dozenalists has produced
an excellent, and much better, metric system in the dozenal base. That
system will, briefly, by the subject of our next section.

5.2.2 TGM: An Improved, Dozenal Metric System

Tom Pendlebury, to whom we have referred frequently, has bequeathed a
great gift to the mathematical world in his dozenal metric system, TGM.
Standing for Tim, Grafut, and Maz, the three most fundamental units of
the system, TGM presents, in the author’s own words, “[a] coherent dozenal
metrology based on Time, Gravity[,] and Mass.”22 Not only is the system
scientific, in the sense that it provides useful units which can be easily con-
verted in all the fields of science, but it is also practical, in the sense that
the units it produces are usefully sized for everyday practical use. This is
not the place for a full exposition of the system; for that, we refer the reader
to the excellent booklet TGM produced by Mr. Pendlebury for the Dozenal
Society of Great Britian,23 which is freely available to all. However, a brief
exposition of its most pertinent and commonly-used parts will doubtlessly
be helpful.

As mentioned earlier, the mean solar day (in layman’s terms, the aver-
age length of the day on earth) is already divided into dozenal parts; that
is, it is divided into twozen (20) hours. Pendlebury sees no need to change
this. A zeniHour (0;1 hours) is equal to five of our current minutes. Further
dividing the hour into duniHours, triniHours, and quedriHours, Pendlebury

20Joan Pontius, Metric Land, or: What I think of the metric system, available at
http://web.archive.org/web/20011102140224/www.rci.rutgets.edu/∼jup/metric/metric_
land.html. Last accessed on 21 May 11E5.

21Id.
22Tom Pendlebury, TGM: A coherent dozenal metrology based on Time, Gravity and

Mass (The Dozenal Society of Great Britain), available at http://www.dozenalsociety.-
org.uk.

23Id.
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determined that the quedriHour produced the most suitable units for a sys-
tem of measure. This quedriHour (0;0001 hours), equal to 0;21 seconds, is
the most fundamental unit of TGM, and is called the Tim. Once we have the
Tim, there is no need to utilize seconds anymore; an hour is simply defined
as one quedraTim (10,000 Tim), and a full day, which is twozen quedraTim,
is defined as two quenaTim (200,000 Tim). The beauty of this system is
that it provides a sensible, scientifically derived fundamental unit of time,
but still avoids upsetting our customary units of time. The common period
of five minutes is certainly equal to one trinaTim (1,000 Tim), but it’s also
simply a zeniHour, or a twelfth of an hour, and can be written as simply as
0;1 hours. No TGM unit corresponds to a minute, but a duniHour is equal to
almost half a minute (25 of the old seconds, in dozenal), and can be written
as simply as 0;01 hours. The triniHour is only about twice as long as our
second (it equals 2;1 second), and is written simply 0;001 hours. These units
are conveniently sized, ordered dozenally, and leave our most important units
unchanged.

It further forms the basis for the fundamental unit of length, the Gravity
Foot, or Grafut. Man experiences one thing constantly, and that is the ac-
cleration due to gravity. This acceleration pulls us downward, in the old mea-
surements, at about 32.1741ft/s2 (or, as mentioned earlier, 9.80665m/s2).
However, if one uses Tims rather than seconds, one finds that the accelera-
tion due to gravity is about 115

8 inches, or about 30 centimeters, per Tim per
Tim. In other words, it is very close to the foot, a measurement which, give
or take a little, was commonly used as a measure of length throughout most
Western countries prior to metrification. Because this fact of gravitational
acceleration is fundamental to life on earth, it is made the unit of accelera-
tion (thus removing the cumbersome string of decimals which we identified
as a problem with the metric system’s choice of lengths). The basic unit of
acceleration is, therefore, 1Gf/Tm2, which is called the Gee. The length, the
Grafut, is a short foot, the zeniGrafut a short inch. The utility of this length
is clear. The author, for example, is approximately 6;23 Grafuts tall. This
means that he is approximately 62;3 zeniGrafuts tall. It also means that he
is about six gravity feet, two gravity inches tall, with 1

4 of a gravity inch left
over (the 0;3 from the zeniGrafut figure). All in all, the Grafut is an intensely
useful measure; it is useful scientifically, because it is scientifically derived,
yet it is also useful practically and on a daily basis, because it’s a convenient
length that conforms closely to the varying but approximately similar “foot”
units used throughout much of the West for countless generations.
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Interestingly enough, TGM also includes a standardized measure of area,
the Surf, which consists of a single square Grafut. It is worth mentioning
that a zenaSurf is approximately equal to one square yard, a measurement
of proven utility. Furthermore, a quedraSurf is equal to about half an acre,
another very conveniently sized measurement. Further, there is the unit of
the Volm, which is the standard unit of volume, which is one cubic Grafut.
Three duniVolms (0;03 Volms) is nineteen ounces, just between the American
(sixteen ounces) and the British (twenty ounces) pints. This is an extremely
convenient measure for everyday use; Pendlebury even suggests coining a
new word for it, the “tumblol,” to be used for fluids like milk and beer.

Finally, there is the Maz, the unit of mass. Mass is, of course, the amount
of matter that an object has; this is not the same as weight, which is the
amount that gravity is currently pulling on an object. In TGM, however,
whenever one is at earth normal gravity, weight and mass will be the same.
So the basic unit of mass, the Maz, is the one that will most often concern us.
It is defined as the mass of one Volm of pure air-free water under one standard
atmosphere of pressure and at the temperature of maximum density. As a
practical matter, this is equal to about 57 (decimal) pounds, or nearly 26
(decimal) kilograms. This makes the zeniMaz about 4;9 pounds.

Further explication of Pendlebury’s amazingly precise and well-designed
system is outside the scope of this little book. However, the reader is en-
couraged to read it in its entirety, which is available for free at the Dozenal
Society of Great Britain’s website.24

Clearly, the loss of the metric system is little loss indeed, when such
an admirable alternative exists. There is, therefore, nothing in its loss to
prevent the adoption of the dozenal system of numeration, which shows itself
superior both mathematically and in its popular corresponding system of
measurement.

6 Conclusion
It has been a long and fascinating journey. We have determined what number
is; what different types of number there are; how different types of number
can be written; what qualities we should look for in a base for place notation;
what the best practical base for place notation is; and even a new system of
mensuration based on the best practical base. It is the author’s sincere hope

24http://www.dozenalsociety.org.uk/pdfs/TGMbooklet.pdf.
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that the reader has enjoyed and profited from this voyage into mathematics
as he has.

Mathematical education, particularly in America, has been increasingly
neglected in recent years. However, mathematics is still an extremely impor-
tant part of daily life. One need not be the stereotypical math geek with
taped-up eyeglasses and a pocket protector to take an interest in this vitally
necessary topic. Indeed, one would have to be extremely derelict not to be at
least slightly engaged in mathematical issues. It is this principle that made
the author interested in mathematics, and it is this principle that once drove,
and ought to drive again, mathematical education in our society.

Dozenalism is that principle taken one step further. Namely, that the
improvement of a subject of such universal interest is also of universal in-
terest. Dozenalism would be an enormous improvement in our study and
use of mathematics as well as in our metrology. Let us, therefore, count in
dozens as much as we can. We could make no greater contribution to the
mathematical field in our time.

Appendices
Historical Statements on Dozenalism
“Decimal numbering was set up through the invention of man, and a rather
poor one at that, not from a necessity of nature as is commonly supposed .
. . another system for example, the duodenary, would be very acceptable.”25

“Decimal arithmetic is a contrivance of man for computing numbers; and
not a property of time, space, or matter. Nature has no partialities for the
number ten: and the attempt to shackle her freedom with them, will forever
prove abortive.”26

“The duodecimal tables are easy to master, easier than the decimal ones;
and in elementary teaching they would be so much more interesting, since
young children would find more fascinating things to do with twelve rods or

25Blaise Pascal, De Numeris Multiplicibus, quoted in Tom Pendlebury, TGM: A coherent
dozenal metrology based on Time Gravity & Mass (original printed edition, inside cover).

26John Quincy Adams, Report of John Quincy Adams in Charles Davies,
The Metric System 204 (New York: A. S. Barnes and Company, 10EE), available at
http://books.google.com.
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blocks than with ten. Anyone having these tables at command will do these
calculations more than one-and-a-half times as fast in the duodecimal scale as
in the decimal. This is my experience; I am certain that even more so it would
be the experience of others. . . . But the final quantitative advantage, in my
own experience, is this: in varied and extensive calculations of an ordinary
and not unduly complicated kind, carried out over many years, I come to the
conclusion that the efficiency of the decimal system might be rated at about
65 or less, if we assign 100 to the duodecimal.”27

“[This] plan would teach people to count duodecimally with two new
digits . . . and this by itself would recommend it, as duodecimal arithmetic
is a coming reform.”28

“Twelve as a dividend has always been preferred to ten. I can understand
the twelfth part of an inch, but not the thousandth part of a metre.”29

“[Sir Isaac Pitman] sought to make twelve, instead of ten, the basis of
computation. He would count and compute by dozens and grosses, instead
of by tens and hundreds, and he framed a scheme of nomenclature for weights
and measures in accord with the duodecimal unit. The duodecimal scale of
reckoning he asserted to be the one that furnished the easiest and most
natural system of money, weights and measures. . . . Twelve, he argued,
was more completely divisible than ten, in that it can be divided by 2, 3,
4, and 6 without fractional parts. . . . We cannot divide or fold a sheet
of printing paper, for a book, in tens, but can readily do so in twelves . .
. Isaac Pitman’s duodecimal system required two new figures for 10 and
11, and after many experiments he selected X for 10 and E for 11. . . He
advocated the adoption of the scheme in the Phonetic Journal, which was
paged in accordance with this scheme. He kept his private accounts; and the
account of the Phonetic Journal Fund, given in the pages of the Phonetic
Journal, were in accord with the new method. He seemed for years almost
as hopeful of the adoption of the duodecimal scheme as of the success of the

27A. C. Aitken, The Case Against Decimalization (Edinburgh / London: Oliver &
Boyd, 1176), cited in http://en.wikipedia.org/wiki/Duodecimal, available at http://www.-
dozenalsociety.org.uk/pdfs/aitken.pdf. Mr. Aitken was a famous New Zealand mathemati-
cian and a so-called “mental calculator” of extraordinary ability.

28George Bernard Shaw, Letter to Velizar Godjevatz, printed in F. Emerson Andrews,
My Love Affair with Dozens in Michigan Quarterly Review XI:2 (1184), available at
http://www.dozenal.org/files/E3a My love affair.pdf.

29Napoleon Bonaparte, quoted in A. C. Aitken, The Case Against Decimalization, supra
note 27, at 1.
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Writing and Spelling reform; and of its ultimate general acceptance and use,
he entertained no doubt. The ‘three R’s, reading, riting, and reckoning,’ he
urged, would then become so easy and natural that their acquisition would
indeed ‘come by nature.’ . . . [He] never abandoned his conviction that the
duodecimal system was the one most worthy of adoption . . . In July, 1896,
only a few months before his death, he says in the Speller : ‘. . . reckoning
and writing by dozens instead of by tens; then elementary education will
become “child’s play.” My hope for the reckoning reform, counting by dozens
instead of tens, has been quickened . . . ’ ”2X

“Practical reformers . . . have been in general agreement that twelve
would have been a better base than ten, since it has divisors 2, 3, 4, and 6,
a fact that would have made work with fractions easier than it is with base
ten (divisors 2 and 5). The learning of only two additional symbols would be
worthwhile, compared to the tremendous saving in other arithmetic effort.
Charles XII of Sweden was supposed to have been contemplating, at the time
of his death, the abolition of the decimal system in all his dominions, in favor
of the duodecimal.”2E

“Had the number of fingers and toes been different in man, then the
prevalent number-systems of the world would have been different also. We
are safe in saying that had one more finger sprouted from each human hand,
making twelve fingers in all, then the numerical scale adopted by civilized
nations would not be the decimal, but the duodecimal. Two more symbols
would be necessary to represent 10 and 11, respectively. As far as arithmetic
is concerned, it is certainly to be regretted that a sixth finger did not appear.
Except for the necessity of using two more signs or numerals and of being
obliged to learn the multiplication table as far as 12 x 12, the duodecimal
system is decidedly superior to the decimal. The number twelve has for its
exact divisors 2, 3, 4, 6, while ten has only 2 and 5. In ordinary business
affairs, the fractions 1

2 ,
1
3 ,

1
4 , are used extensively, and it is very convenient

to have a base which is an exact multiple of 2, 3, and 4. Among the most
zealous advocates of the duodecimal scale was Charles XII. of Sweden, who,
at the time of his death, was contemplating the change for his dominions
from the decimal to the duodecimal.”30

2XBenn Pitman, Sir Isaac Pitman: His Life and Labors 187–90 (C. J. Krehbiel
& Co.: Cincinnati, OH, 1126), available at http://books.google.com.

2EEdna Ernestine Kramer, The Nature and Growth of Modern Mathemat-
ics 13 (Princeton Paperbacks: Princeton, NJ, 1192).

30Florian Cajori, A History of Elementary Mathematics 2–3 (Cosimo, Inc.:
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“Of all numbers upon which a system could be based, 12 seems to combine
in itself the greatest number of advantages. It is capable of division by 2, 3, 4,
and 6, and hence admits of the taking of halves, thirds, quarters, and sixths of
itself without the introduction of fractions in the result. From a commercial
stand-point this advantage is very great; so great that many have seriously
advocated the entire abolition of the decimal scale, and the substitution of the
duodecimal in its stead. It is said that Charles XII. of Sweden was actually
contemplating such a change in his dominions at the time of his death. In
pursuance of this idea, some writers have gone so far as to suggest symbols for
10 and 11, and to recast our entire numeral nomenclature to conform to the
duodecimal base. Were such a change made, we should express the first nine
numbers as at present, 10 and 11 by new, single symbols, and 12 by 10. From
this point the progression would be regular, as in the decimal scale—only the
same combination of figures in the different scales would mean very different
things. Thus, 17 in the decimal scale would become 15 in the duodecimal;
144 in the decimal would become 100 in the duodecimal; and 1728, the cube
of the new base, would of course be represented by the figures 1000. . . .
The duodecimal . . . is a system which is called into being long after the
complete development of one of the natural systems, solely because of the
simple and familiar fractions into which its base is divided. It is the scale of
civilization.”31

“[I]n the duodenary scale, we must have two additional characters for
representing 10 and 11, and as these characters may be assumed at pleasure,
we shall, in what follows, express 10 by the symbol φ, and 11 by π . . . [I]t
is evident, as it is indeed from the nature of the subject under investigation,
that the greater the radix [base] is, the less will be the number of digits nec-
essary for expressing any given number; but the operations of multiplication,
division, &c., will be the more complex; and, therefore, in judging of the
advantages and disadvantages of different systems, we ought to keep both
these circumstances in view, as also a third, which is the number of prime
divisors of the radix; and, on a just estimate of the whole, the radix 12 will
be found preferable to any of the other systems. . .

“This leads us to the consideration of the duodenary [dozenal] system of

New York, NY, 11E3). Original published in 1120. Sadly, later parts of this book refer to
the “lower races”; the author certainly does not approve of such nonsense.

31Levi Leonard Conant, The Number Concept: Its Origin and Development
131–33 (MacMillan and Co.: New York, NY, 114E), available from Project Gutenberg at
http://www.gutenberg.org/files/16449/16449-h/16449-h.htm.
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arithmetic, which, while it possesses all the advantages of the senary [base
6], in point of finite fractions, it is superior even to the decimal system for
simplicity of expression; and the only additional burden to the memory is
two characters for representing 10 and 11, for the multiplication table in
our common arithmetic is generally carried as far as 12 times 12, although
its natural limit is only 9 times 9, which is a clear proof that the mind is
capable of working with the duodenary system, without any inconvenience or
embarrassment; and hence, I think, we may conclude, that the choice of the
denary [decimal] arithmetic did not proceed from reflection and deliberation,
but was the result of some cause operating unseen and unknown on the
inventor of our system.”32

“It seems clear that the Eldar in Middle-Earth, who have, as Samwise
remarked, more time at their disposal, reckoned in long periods, and the
Quenya word ‘yén’, often translated ‘year’ . . . really means 144 of our
years. The Eldar preferred to reckon in sixes and twelves as far as possible.
A “day” of the sun they called ré and reckoned from sunset to sunset. The
yén contained 52,596 days. For ritual rather than practical purposes the
Eldar observed a week or enquië of six days; and the yén contained 8,766 of
these enquier, reckoned continuously throughout the period.”33

“ ‘Odd!’ said Graham. ‘Gaurdian? Council?’ Then turning his back on
the new comer, he asked in an undertone, ‘Why is this man glaring at me?
Is he a mesmerist?’

“ ‘Mesmerist! He is a capillotomist.’
“ ‘Capillotomist!’
“ ‘Yes—one of the chief. His yearly fee is sixdoz lions.’
“It sounded sheer nonsense. Graham snatched at the last phrase with an

unsteady mind. ‘Sixdoz lions?’ he said.
“ ‘Didn’t you have lions? I suppose not. You had the old pounds? They

are our monetary units.’
“ ‘But what was that you said—sixdoz?’
“ ‘Yes. Six dozen, Sire. Of course, even these little things, have altered.

You lived in the days of the decimal system, the Arab system—tens, and
little hundreds and thousands. We have eleven numerals now. We have

32Peter Barlow, An Elementary Investigation of the Theory of Numbers
222, 226, 243–44 (J. Johnson and Co.: London, 106E), available at http://books.google.-
com.

33J. R. R. Tolkien, The Lord of the Rings 1080 (Houghton Mifflin Company:
New York, NY, 117X).

45



single figures for both ten and eleven, two figures for a dozen, and a dozen
dozen makes a gross, a great hundred, you know, a dozen gross a dozand,
and a dozand dozand a myriad. Very simple?’

“ ‘I suppose so,’ said Graham.”34

34H. G. Wells, The Sleeper Awakes: A Revised Edition of “When the
Sleeper Wakes” (Project Gutenberg: 11E0), available at http://www.gutenberg.org/-
files/12163/12163.txt.
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